AC/DC Module

电磁模拟计算

AC/DC Module

本瞬态模型通过磁芯中的非线性 B-H 曲线描述单相 E 磁芯变压器。图上显示了主/从线圈中的电磁场和电流。

模拟电容器、电感器、绝缘子、线圈、电机和传感器

AC/DC 模块用于仿真静态和低频应用中的电场、磁场和电磁场。典型应用包括电容器、电感器、绝缘子、线圈、电机、执行器和传感器,并能计算电阻、电容、电感、阻抗、力和扭矩等参数。

查看截屏 »

材料属性和本构关系通过介电常数、磁导率、传导率和剩余场定义。材料属性是空间依赖、时间依赖、各向异性和包含损耗。电介质和磁介质均可包括非线性因素(例如 B-H 曲线),或通过隐式方程进行描述。

二维或三维的电路和布局耦合仿真

将电气元件视为一个更大系统的一部分时,AC/DC 模块提供了一个带有 SPICE 电路列表的接口,供您选择用于进一步模拟的电路元件。使用基于电路的模拟可以开发更复杂的系统模型,同时保持与电路中关键器件的完整物理场模型之间的关联,从而可以同时在两个层级上实现设计创新和优化。电子器件的布局可以通过 ECAD 导入模块,使用 AC/DC 模块来进行分析。而且这种布局的仿真并不仅仅局限于电磁场。

查看截屏 »

更多图片

  • 永磁体:本案例模拟了使用永磁体构成的磁力转子产生的以向外磁通量为主的静磁场。这种磁力转子也称为哈尔巴赫转子。由于操作中不产生接触、无摩擦,永磁体在电动机、发电机和磁力齿轮等旋转设备中的使用日益流行。本模型演示了如何在对称条件下,只需要通过对单个转子进行模拟,计算三维 4 极成对转子的磁场。 永磁体:本案例模拟了使用永磁体构成的磁力转子产生的以向外磁通量为主的静磁场。这种磁力转子也称为哈尔巴赫转子。由于操作中不产生接触、无摩擦,永磁体在电动机、发电机和磁力齿轮等旋转设备中的使用日益流行。本模型演示了如何在对称条件下,只需要通过对单个转子进行模拟,计算三维 4 极成对转子的磁场。
  • ECAD 导入:利用 AC/DC 模块计算以 ECAD 文件格式导入的平面变压器模型的电容和电感。这种类型的器件用于必须使用超薄高功率设计的电源和直流/直流转换器。通过 ODB++(X) 文件导入整个布局(包括变压器铁氧体磁芯的外形)。ECAD 导入模块用于读取布局并自动创建印制电路板(PCB)和铁氧体磁芯的三维几何模型。 ECAD 导入:利用 AC/DC 模块计算以 ECAD 文件格式导入的平面变压器模型的电容和电感。这种类型的器件用于必须使用超薄高功率设计的电源和直流/直流转换器。通过 ODB++(X) 文件导入整个布局(包括变压器铁氧体磁芯的外形)。ECAD 导入模块用于读取布局并自动创建印制电路板(PCB)和铁氧体磁芯的三维几何模型。
  • 半导体加工:感应加热石墨感受器。该模型展示了感受器内和石英管上的温度分布。 半导体加工:感应加热石墨感受器。该模型展示了感受器内和石英管上的温度分布。
  • 医疗技术:X 射线设备中的高压生成器的电磁场仿真。模型由 Comet AG, Switzerland 提供。 医疗技术:X 射线设备中的高压生成器的电磁场仿真。模型由 Comet AG, Switzerland 提供。
  • 质谱分析:AC/DC 模块与粒子追踪模块耦合仿真。可视化显示了具有特定电荷质量比的离子在四极质谱仪中的运动轨迹。 质谱分析:AC/DC 模块与粒子追踪模块耦合仿真。可视化显示了具有特定电荷质量比的离子在四极质谱仪中的运动轨迹。
  • 电动机械:使用全新的三维旋转机械用户接口仿真的有刷直流电机。此处结果:磁场、线圈电流、轴扭矩和旋转角。 电动机械:使用全新的三维旋转机械用户接口仿真的有刷直流电机。此处结果:磁场、线圈电流、轴扭矩和旋转角。

与 CAD、MATLAB® 和 Excel® 链接

为了方便您分析机械 CAD 模型的电磁属性,COMSOL 提供了 ECAD 导入模块、CAD 导入模块和高级 CAD 系统的 LiveLink 模块。LiveLink 模块可以将参数化 CAD 模型保留在各自的环境中,并从 COMSOL Multiphysics® 内控制几何尺寸,还可以对多个模型参数同时进行参数化扫描。对于重复性模拟作业,LiveLink for MATLAB® 允许您使用 MATLAB® 脚本或函数来运行 COMSOL® 模型。COMSOL Desktop® 中用到的所有操作都可以改为通过 MATLAB 命令行的方式来运行。您还可以在 MATLAB 环境中将 COMSOL 命令与现有的 MATLAB 代码混合使用。对于从电子表格中操作的电磁仿真,LiveLink for Excel® 提供了一种从 COMSOL Desktop 与包含COMSOL 环境中定义的参数的电子表格数据同步建模的方法。

在产品设计时考虑多物理场

虽然设备属性可能主要由电磁场决定其特性,但它们也会受其他类型的物理场影响。例如,热效应可以改变材料的电气属性,在发电机的每一步设计过程中,都需要充分了解发电机中的机电挠度和振动。AC/DC 模块全面地集成在 COMSOL 环境中,可以考虑各种各样的影响虚拟模型的物理效应。

查看截屏 »

边界条件和无限元

AC/DC 模块使您可以使用一系列基本边界条件,例如电势和磁势、电绝缘和磁绝缘、零电荷以及场和电流等。此外还包含了一系列高级边界条件,例如,与 SPICE 电路连接的终端、悬浮电位、对称性和周期性边界条件、表面阻抗、表面电流、分布电阻、电容、阻抗和接触电阻等。要模拟无限大或大尺度模型,可对电场和磁场使用无限元方法。在有限大的模型区域外部添加一个无限元层时,将自动调整物理场方程的尺度。这使得可以使用一个有限大的模型表示无限大的域,并避免模型边界的人工截断效应。

查看截屏 »

电磁壳

对于非常薄的结构,AC/DC 模块提供了一系列专用公式来进行高效的电磁仿真,此时结构的物理厚度不再需要在几何模型中表示出来,而是改为使用一个薄壳表示。这种薄壳公式可用于直流、静电、静磁和感应仿真,对于电磁兼容 (EMC) 和电磁干扰 (EMI) 中的电磁屏蔽特别重要。

连贯的电磁场建模流程

以下步骤描述了该模块简洁的建模流程:定义几何结构、选择材料、选择适合的 AC/DC 模块接口、定义边界条件和初始值、自动创建有限元网格、求解,以及结果可视化。所有这些步骤均从 COMSOL Desktop® 中访问。通过一系列预定义的多物理场耦合接口或用户自定义耦合,使用任何能想象到的方式,可将 AC/DC 模块仿真与每个 COMSOL 模块耦合。一个典型的预定义模式是 AC/DC 模块和粒子追踪模块之间耦合模式,这里电场或磁场会作用于有质量或无质量的带电粒子。优化模块可以与 AC/DC 模块耦合,对电压和电流激励、材料属性、几何尺寸等参数进行优化。

查看截屏 »

灵活性与鲁棒性

AC/DC 模块包含了二维和三维的静态和动态电磁场分析。AC/DC 模块会在底层方程中生成麦克斯韦方程组,并根据材料属性和边界条件进行求解。软件使用有限元方法,通过数值稳定的棱边元离散,配合最先进的求解器求解这些方程。静态、频域和时域模式分别使用不同的公式进行仿真。结果图形窗口中会呈现一些预设绘图:电场与磁场、电流与电压,或用户自定义物理量与派生值。

查看截屏 »

Current Transformer Design That Combines Finite Element Analysis and Electric Circuit Simulation

MRI Tumor-Tracked Cancer Treatment

Multiphysics Simulation Helps Miele to Optimize Induction Stove Designs

Upgrading the Nuts and Bolts of the Electrical Grid for a New Generation

Dielectric Stress Simulation Advances Design of ABB Smart Grid-Ready Tap Changers

Simulation of Magnetic Flux Leakage Inspection

Control of Joule Heating Extends Performance and Device Life

Lightning-Proof Wind Turbines

Switching Made Easy

Multiphysics Software, a Versatile, Cost-Effective R&D Tool at Sharp

How Reclosers Ensure a Steady Supply of Power: It’s All in the Magnet

Simulation-Based Design of New Implantable Hearing Device

Multiphysics Simulations Help Track Underground Fluid Movements

Reduced-Weight Reaction Sphere Makes Way for Extra Satellite Payload

Modeling Scar Effects in Electrical Spinal Cord Stimulation

E-core Transformer Using Multi-Turn Coil Domains

Modeling of a 3D Inductor

Inductive Heating of a Copper Cylinder

The Magnetic Field from a Permanent Magnet

Inductor in an Amplifier Circuit

Electron Beam Diverging Due to Self Potential

Mutual Inductance and Induced Currents in a Multi-Turn Coil

A Tunable MEMS Capacitor