科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Design and Simulation of 3D MEMS Piezoelectric Gyroscope using COMSOL Multiphysics®

T.Madhuranath[1], R.Praharsha[1], Dr.K.Srinivasa Rao[1]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

MEMS is the leading technology which combines both electronic and mechanical devices on a single microchip. Tracing the position of the object is an important problem in engineering. This can be addressed by Gyroscopes. These sensors are used to find orientation and angular velocity. This paper focuses on 3D MEMS Piezoelectric Gyroscope. COMSOL Multiphysics® is used for designing and ...

Parametric Study of Polyimide - Lead Zirconate Titanate Thin Film Cantilevers for Transducer Applications

A. Arevalo[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia

The simulation of the piezoelectric actuation of the micro-cantilever is presented. Lead Zirconate Titanate (PZT) was chosen for the device fabrication design, due to its thin film processing flexibility. Four layers compose the cantilever structures presented in this work: PZT (piezoelectric material), Platinum (electrodes) and Zirconium Oxide as the buffer layer for the PZT film and polyimide ...

Sensitivity Optimization of Microfluidic Capacitance Sensors

S. Satti[1], M. Baghini[1]
[1]Indian Institute of Technology Bombay, Mumbai, Maharashtra, India

As a part of a lab-on-chip-device, more often it is required to measure dielectric constant of the fluid. For this purpose it is necessary to develop a sensor whose size is compatible with microfluidic channel. The work, presented in this paper, studies effect of the parameters influencing sensitivity of such a sensor and ultimately optimizes these dimensions to maximize the sensitivity. We ...

VLSI Layout Based Design Optimization of a Piezoresistive MEMS Pressure Sensors using COMSOL Multiphysics

R. Komaragiri[1], Sarath. S.[1], N. Kattabomman[1]
[1]NIT Calicut, Kozhikode, Kerala

This paper focuses on the diaphragm design and optimization of a piezoresistive Micro Electro Mechanical System (MEMS) pressure sensor by considering Very Large Scale Integration (VLSI) layout schemes. The aim of these studies is to find an optimal diaphragm shape by Finite Element Method (FEM) using COMSOL®, which is most suitable for VLSI layout. Optimal diaphragm shape is a diaphragm shape ...

Modeling Drug Release from Materials Based on Electrospun Nanofibers

P. Nakielski[1], T. Kowalczyk[1], T.A. Kowalewski[1]
[1]Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland

Comprehensive studies of drug transport in nanofibres based mats have been performed to predict drug release kinetics. The paper presents our approach to analyze the impact of fibers arrangement, one of the parameters varied in our parallel experimental studies. COMSOL Multiphysics® has been used to assess the impact of the various purposed arrangements of fibers within the mat. Drug release ...

Electrohydrodynamic Micropump Modeling for Performance Optimization

A. Mulye[1], S. Potnis[2]
[1]Northeastern University, Boston, MA, USA
[2]VIT, Mumbai, Maharashtra, India

We present an optimized and efficient design of an electrohydrodynamic (EHD) micropump for high performance in microscale and biological applications. We are targeting two major applications, a parylene C design for electrically-actuated medicine delivery, and a silicon-based pump design for on-chip cooling of microprocessors and SOCs. The EHD micropump works on the movement of microscale ...

Modeling and Simulation of Silicon Optical MEMS Switches Controlled by Electrostatic Field

J. Golebiowski[1], S. Milcarz[1]
[1]Technical University of Lodz, Poland

The use of optical sensors in the industry is still growing. A transmission of signal from the sensors is mostly done by optical fibers. Switching the signals from optical paths may be done by using micromechanical silicon switches. The main advantage is an ability to transmit data from many sensors using different wavelengths, simultaneously minimizing optical power losses. A silicon beam with ...

Simulation of Cantilever Based Sensors for Smart Textile Applications

S. Mano[1], S. Sowmya[1], Jaisree Meenaa Pria K N J[1], M. N. Sundaram[1], C. D. Koman[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Smart fabrics enable the integration of electronics into fabric. They can serve as a suitable sensor providing around-the-clock assistance for the real-time monitoring of health parameters. Here, we aim to develop a free-standing piezoelectric cantilever sensor integrated into conventional fabric to improve its functionality. These smart sensors have the ability to convert physiological ...

Modeling of MEMS Based Bolometer for Measuring Radiations from Nuclear Power Plant

S. Nisitha[1], T. Satyanarayana[2], S. Sreeja[1]
[1]Department of EIE, Lakireddy Bali Reddy Engineering College, Mylavaram, Andhra Pradesh, India.
[2]NPMASS Centre, Department of EIE, Lakireddy Bali Reddy Autonomous Engineering College, Mylavaram, Andhra
Pradesh, India

There has been growing demand for high performance micro sensors capable of detecting nuclear radiations being released from various industries, Nuclear reactors. Radiations emitted from the radioactive materials are invisible and not directly detectable by human senses. Thus it is highly essential to work on design of bolometers with absorptive elements providing optimum sensitivity. The ...

Simulation of a One-Port SAW Resonator using COMSOL Multiphysics

R. Krishnan, H.B. Nemade, and R. Paily
Indian Institute of Technology, Guwahati

In this paper, we discuss simulation of one-port Surface Acoustic Wave (SAW) resonators using COMSOL Multiphysics. Resonator action can be achieved in one of the two ways; a single Inter-digital Transducer (IDT) having several fingers over a piezoelectric substrate or a short IDT with reflecting gratings at the ends of the IDT. We have modeled a Rayleigh wave type SAW device choosing YZ ...

Quick Search