科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Image Denoising and Segmentation using COMSOL Multiphysics

F. Zama
Department of Mathematics, Bologna University, Bologna, Italy

Partial differential equations have recently become popular and useful tools for several image processing tasks such as image de-noising and segmentation.In this work, we implement a unified image de-noising and segmentation approach which is based on a nonlinear diffusion equation with a reactive term for achieving edge preserving smoothing and segmentation. This model is highly nonlinear and ...

Expert System for Synchronous Machines Based on COMSOL Multiphysics

G. E. Stebner, and C. Hartwig
Ostfalia University
IMEC
Wolfenbüttel, Germany

Even though the researches in synchronous machines are advanced, the practical design still is a problem because of the complex interaction between several design parameters. The project “EaSync” at the Ostfalia University focuses on the bundling of machine models using COMSOL Multiphysics® to create a semi-automatic engineering process. The project is based on student research projects ...

Analysis of a Three-phase Transformer Using COMSOL Multiphysics and a Virtual Reality Environment

A.Buchau, and W. M. Rucker
Institut für Theorie der Elektrotechnik
Universität Stuttgart
Stuttgart, Germany

The simulation software COMSOL Multiphysics is applied to the numerical com-putation of the magnetic fields of a three-phase transformer. A three-dimensional model of the geometrical configuration is created with the help of the CAD tools of COMSOL Multiphysics. There, all dimensions of the transformer are defined by parameters. The creation of an optimal finite element mesh is improved by some ...

COMSOL-Based Nuclear Reactor Kinetics Studies at the HFIR

D. Chandler[1], J. Freels[2], R. Primm III[3], and G. Maldonado[1]
[1]Department of Nuclear Engineering, University of Tennessee, Knoxville, TN
[2]Research Reactors Division, Oak Ridge National Laboratory, Oak Ridge, TN
[3]Primm Consulting, LLC., Knoxville, TN

The computational ability to accurately predict the dynamic behavior of a nuclear reactor core in response to reactivity-induced perturbations is an important subject in reactor physics. Space-time and point kinetics methodologies were developed for the purpose of studying the transient-induced behavior of the High Flux Isotope Reactor’s (HFIR) compact core. The space-time simulations employed ...

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...

Modeling of Active Infrared Thermography for Defect Detection in Concrete Structures

S. Carcangiu[1], B. Cannas[1], G. Concu[2], N. Trulli[3]
[1]Department of Electric and Electronic Engineering, University of Cagliari, Cagliari, Italy
[2]Department of Civil Engineering, Environmental and Architecture, University of Cagliari, Cagliari, Italy
[3]Department of Architecture and Planning, University of Sassari, Alghero, Italy

An experimental program has been developed, with the purpose of evaluating the reliability in building diagnosis and characterization of an integrated analysis of several parameters related to heat transfer process through the building material. The Infrared Thermography Technique (IRT) has been applied. Experimental measurements have been carried out on a concrete structure with an inside ...

Thermo-Acoustic Analysis of an Advanced Lean Injection System in a Tubular Combustor Configuration

A. Giusti[1], A. Andreini[1], B. Facchini[1], F. Turrini[2], Ignazio Vitale[2]
[1]Department of Energy Engineering, University of Florence, Florence, Italy
[2]Avio, Turin, Italy

In this work a thermoacoustic analysis of a tubular combustor with an advanced lean injection system is presented. The performed analysis is based on the resolution of the eigenvalue problem related to an inhomogeneous wave equation which includes a source term representing heat release fluctuations (the so called Flame-Transfer-Function, FTF) in the flame region. The effect of the mean flow is ...

Undergraduate Studies of Supersonic Flow from a Converging-Diverging Nozzle

K. Stein[1], N. Gessner[1], R. Peterson[1], A. Wiedmann[1]
[1]Department of Physics, Bethel University, St. Paul, MN, USA

Undergraduate studies are carried out to examine the supersonic flow from an axisymmetric converging-diverging nozzle. Flow in the nozzle is initiated by the rupture of a diaphragm that is positioned between the nozzle and a 1-gallon pressurized air tank. Simulations are carried out in COMSOL Multiphysics® for unsteady, axisymmetric flow with the High Mach Number interface of the CFD Module. ...

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...

Space-charge-limited Current in the Quantum Regime by Solving the Schroedinger-Poisson Equation

M.-C. Lin
NanoScience Simulation Laboratory, Department of Physics, Fu Jen Catholic University, Taipei County, Taiwan

The Child-Langmuir law gives the maximum electron current, known as the space-charge-limited current, which arises because the space charge in the diode presents a potential barrier to the incident electrons. While there are modifications due to geometrical and relativistic effects, the limited current remains a fundamental quantity characterizing the beam-gap interaction. In the research of ...

Quick Search