科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

COMSOL Implementation of Valet-Fert Model for CPP GMR devices

T. Xu[1], C.K.A. Mewes[1], S. Gupta[2], and W.H. Butler[1]
[1]Department of Physics and Astronomy and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA
[2]Department of Metallurgical and Materials Engineering and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA

The Giant Magneto Resistance (GMR) effect is a quantum mechanical effect which can be observed in systems consisting of thin alternating ferromagnetic and non-ferromagnetic layers. Simulation using COMSOL allows the evaluation of the magneto-resistance ratio and the electrical resistances of realistic CPP-GMR devices and opens the possibility to study new device materials and designs.

Using COMSOL for Smart Determination of Material Properties Using Inverse Modeling Techniques

J. van Schijndel, S. Uittenbosch, and T. Thomassen
Eindhoven University of Technology
Eindhoven, Netherlands

The paper presents the development of a method that determines building material and surface properties using relative simple and low-budget experiments, The method comprehends an optimal design of an experimental set up for smart determination of heat and moisture properties using both normal and inverse modeling techniques. It is concluded that the suggested methodology of the inverse ...

Development of the Service Frame for SBS Tracker GEM and TENDIGEM Development

F. Noto[1], E. Cisbani[2], F. Librizzi[1], F. Mammoliti[3], C.M. Sutera[1]
[1]Istituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2]Istituto Nazionale Fisica Nucleare - Sezione di Roma, Roma, Italy; Istituto Superiore di Sanità, Roma, Italy
[3]Istituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy

The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm² without noticeable aging and to provide the sub-millimeter resolution on working chambers up to 45x45 cm² [1]. A new GEM tracker is under development for the upgrade of the SBS spectrometer in Hall A at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber ...

Optimum Design of Dual-modality Sensing Electrode Array

W. Huaxiang, W. Jing, H. Li, and J. Weiwei
School of Electrical Engineering & Automation, Tianjin University, Tianjin, Taiwan

Sensing electrodes array model of 3-Dimensional ERT/ ECT dual modality is established by using the software COMSOL. According to the uniformity of sensitivity field distribution, the correlation coefficient and the reconstructed image space resolution, the ECT/ERT dual modality sensing electrode arrays are optimized. Experimental results show that the optimized sensing electrode array of the ...

Modeling Dispersal of Genetic Information in Structured Agricultural Landscapes with Partial Differential Equations

K. Lipsius, and O. Richter
Institute of Geoecology, TU Braunschweig, Germany

We present a model for plant dispersal in agricultural landscapes to evaluate the gene dispersal from genetically modified (GM) plants. Dispersal from seed and pollen is modeled with partial differential equations. In scenarios, we investigated the effect of roadside application of non-selective herbicides on dispersal of herbicide tolerant oilseed rape (HT OSR). We showed that OSR growing on ...

Is Experimentation More Intuitive?

R. Venkataraghavan
Unilever R&D
Bangalore, India

Venkataraghavan is the Discover Category Leader, Water, working at the interface of Science, Technology and Business, for developing solutions and products for water purification at Unilever R&D, Bangalore. He joined Unilever in 2002 and earlier worked in interfacial science, materials science and electrodynamics for the Laundry Category. Venkataraghavan also had a stint with Unilever Technology ...

Material Characterization Method Development: From Education to Design Optimization

C. Morgan[1], N. Kenkare[1], M. Williams[2], A. Peterson[2], and D. Williams[2]
[1]Alcon Eye Care Division of Novartis R&D, Duluth, GA
[2]Alcon Eye Care Division of Novartis R&D and Georgia Institute of Technology Co-op Program, GA

Introduction of silicone hydrogel contact lens materials provided products of unprecedented capability to deliver oxygen to the eye during wear. One additional material characteristic of interest is the material’s permeability to ions. This paper discusses descriptive tools and optimization of an impedance method of characterizing ion permeability. A physical model of conductive paper with ...

Implementation of FEMLAB in S-Functions

van Schijndel, A.W.M.J.
Technische Universiteit Eindhoven, Netherlands

FEMLAB has standard facilities to export models to Simulink. Normally, the standard export works well if the solvers, available in Simulink, can handle the problem. However, if a model in FEMLAB needs special solvers, for example airflow or other non-linear problems, the standard export to Simulink is often not suitable, because the standard solvers of Simulink cannot handle such a problem ...

Einsatz von FEMLAB in der Elektrotechnikausbildung

Timmerberg, J.
Fachhochschule Ostfriesland/Oldenburg/Wilhelmshaven, FB Wirtschaftsingenieurwesen, Wilhelmshaven

Unter Elektrotechnikausbildung ist in diesem Papier die Hochschulausbildung und insbeson-dere die in den Fächern Allgemeine Elektrotechnik und Theoretische Elektrotechnik zu ver-stehen. Üblicherweise wird das Gebäude der Elektrotechnik auf den Erfahrungssätzen des Strömungs-, elektrostatischen und magnetischen Feldes aufgebaut. Zur Motivation und Fes-tigung des Wissens werden dann in den ...

Image Denoising and Segmentation using COMSOL Multiphysics

F. Zama
Department of Mathematics, Bologna University, Bologna, Italy

Partial differential equations have recently become popular and useful tools for several image processing tasks such as image de-noising and segmentation.In this work, we implement a unified image de-noising and segmentation approach which is based on a nonlinear diffusion equation with a reactive term for achieving edge preserving smoothing and segmentation. This model is highly nonlinear and ...

Quick Search