科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Numerical Study of Local Density of States in Photonic Crystal Waveguides

A. Javadi[1], P. Lodahl[1]
[1]Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

In this contribution we study how a planar photonic crystal waveguide (PhCW), created by introducing a line defect in the photonic crystal, can modify the projected local density of states (LDOS) for a dipole emitter. We use the COMSOL Multiphysics® RF Module to carry out eigenvalue calculations studies on PhCW. When the dipole is in resonance with the waveguide mode, the enhancement Fp of ...

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

Enhancement of Terahertz Emission by AuGe Nanopatterns

H. Surdi[1], A. Singh[1], S. S. Prabhu [1]
[1]Tata Institute of Fundamental Research, Homi Bhabha 
Road, Mumbai,India

Since the advent of Terhertz(THz) technology, improving the THz emission power has been one of the major research goal. One of the methods to increase the THz emission power is to increase the coupling of excitation laser light to the dielectric substrate.The field of nano-plasmonics exploits light-matter interactions at nanometer scale. With the help of metallic nano-structure at ...

Tunable MEMS Capacitor for RF Applications

H. S. Shriram[1], T. Nimje[1], D. Vakharia[1]
[1]BITS Pilani, Rajasthan, India

Radio Frequency MEMS devices have emerged to overcome the problem of high losses associated with semiconductors at high frequencies. A tunable MEMS capacitor is a micrometre-scale electronic device whose capacitance is controlled through different actuation mechanisms which govern the moving parts. It can have electrostatic or electrothermal actuators depending on the functional complexity and ...

Optical and Electrical Modeling of Three Dimensional Dye Sensitized Solar Cells

P. Guo[1]
[1]Northwestern University, Evanston, IL, USA

Dye sensitized solar cells (DSSCs) have received tremendous attention as alternative photon harvesting devices. While the sintered TiO2 nanoparticle network attached with dye molecules achieves efficient photon absorption, the electrons have to diffuse through the long TiO2 network to reach the contact, resulting in a high electron density and thus increased recombination. Extensive research ...

A Novel Mechanical Stress Measurement Method Applied to Wind Turbine Rotor Blades

A.H. Hegab[1], J.P. Kaerst[1]
[1]HAWK, University of Applied Sciences and Arts, Goettingen, Germany

Rotor blades for wind turbines are made of GFRP material. They have to be designed to withstand wind and weather over their approximately 20 years of lifetime. The ability to monitor the mechanical stress is crucial in order to reduce maintenance costs and to maximize operational availability. This paper presents the combination of SPICE® and COMSOL Multiphysics®, in order to reduce ...

Scan Angle Stability of a Second-Order Plasma-Switched Frequency Selective Surface

L. W. Cross[1], M. J. Almalkawi[2]
[1]Imaging Systems Technology, Toledo, OH, USA
[2]EECS Department, College of Engineering, University of Toledo, Toledo, OH, USA

Large-area, light-weight electromagnetic protection (EP) structures are needed to protect sensitive microwave sensors and communications systems from high-power microwave (HPM) and electromagnetic pulse (EMP) threats. This paper presents the use of COMSOL Multiphysics® for electromagnetic simulation of a plasma-based frequency selective surface (FSS) structure that can provide significant ...

Finite-element Analysis of Properties in Real and Idealized Photonic Crystal Fibres, Application to Supercontinuum Generation

Gérôme, F., Viale, P., Tombelaine, V., Leproux, P., Auguste, J.L., Février, S., Blondy, J.M., Couderc, V.
IRCOM, CNRS UMR 6615, Limoges, France

Using a full-vector finite-element method, we calculate modal properties in index-guiding photonic crystal fibres. The influence of the deformation of the geometry in actual fibre structures is evaluated and compared to the idealized-model. These results are applied to the supercontinuum generation. Moreover, development of MATLAB softwares for FEMLAB 3.1 are presented.

Coupled Electromagnetic and Heat Transfer Simulations for RF Applicator Design for Efficient Heating of Materials

C. Thiagarajan[1], J. Anto[2]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka India.
[2]Researcher

Conventional heating of material wastes energy during heating due to inherent radiation, conduction and convection based heating mechanism. Alternate efficient heating methods are actively researched for improved efficiency. Radio frequency based electromagnetic heating is increasingly used for efficient heating in place of conventional heating. This requires coupling of electromagnetic and heat ...

Universal Dielectric Response of Atmospheric Ice Using COMSOL Multiphysics®

U.N. Mughal[1], M.S. Virk[1], K. Zaman[1]
[1]Narvik University College, Narvik, Norway

Heterogeneous materials with different phases, are conductive and insulating (dielectric), and are physically present in different natural materials as e.g. atmospheric ice. Jonscher’s proposed ‘universal dielectric response’ is not sufficient for such materials, as it only reflects conductivity as a nonlinear function of frequency, whereas at lower temperatures dipolar vibrations are also ...

Quick Search

1 - 10 of 188 First | < Previous | Next > | Last