科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Thermo-fluid-dynamic evaluation of a microsystem to analyse radioactive solutions

G. Janssens-Maenhout
Joint Research Centre Ispra
Ispra, Italy

It has become common place to use micro-electromechanical systems (MEMS) to evaluate the chemical properties of solutions. However, such microchips have not yet been applied to the analysis of radioactive solutions, for the purpose of nuclear safeguards, in the nuclear reprocessing industry. Implementing MEMS in this area results in a reduced volume of the sample to be analysed. This has many ...

The pianistic touch: FEMLAB modeling of a grand piano action

Riccardo Ferrari
University of Trieste
Trieste, Italy

In this presentation we will show how to partially model a grand piano action. Then we will apply different touches to this virtual action and try to hear any difference. --------------------------------- Riccardo Ferrari was one of the keynote speakers at the COMSOL User's Conference, fall 2005 in Milano

Assessment of Hemodynamic Conditions in a-v Fistulas using CFD

A. K. Niemann1,5, S. A. Kock1, J. V. Nygaard2, E-T. Fründ3, S. E. Petersen4, and J. M. Hasenkam5
1 MR-center, Aarhus University Hospital Skejby, Aarhus, Denmark
2Interdisciplinary Nanoscience Center, Faculty of Science, University of Aarhus, Skejby, Denmark
3Dept. of Radiology, Aarhus University Hospital, "Aalborg Sygehus Syd", Aalborg, Denmark
4Dept. of Urology, Aarhus University Hospital Skejby, Aarhus, Denmark
5Dept. of Cardio-Thoracic and Vascular Surgery, and Clinical Institute, Aarhus University Hospital Skejby, Aarhus, Denmark

Using Computational Fluid Dynamics, different geometries of side-to-side a-v fistulas for hemodialysis access are evaluated. We created five CAD-models of fistulas with the length of the anastomosis varying from 5 to 15 mm. The five models were analyzed and evaluated using the k-ε turbulence application mode in COMSOL Multiphysics to determine if an optimal length of anastomosis exists. ...

Modelling Nutrient Transport in a Hollow-Fiber Membrane Bioreactor with Considerating the sub-Cellular Scale Mass Transfer

N. S. Abdullah1, D. B. Das2, and D. R. Jones1
1Department of Engineering Science, University of Oxford, Oxford, UK
2Department of Chemical Engineering, Loughborough University, Leicestershire, UK

Current bone tissue engineering protocols allow ex vivo growth of soft bone tissues in bioreactors. Recent experimental studies suggest that hollow fiber membrane bioreactors (HFMBs) may be used for growing 3-dimensional, clinically viable bone tissues. In order to facilitate the design of the HFMB for growing bone tissues, it is necessary to elucidate the quantitative relationships between cell ...

Design of heat flux microsensor assisted by COMSOL for the study of energy transfer on Si and Cu thin samples

L. Bedra, N. Semmar, A.-L. Thomann, R. Dussart, J. Mathias, and Y. Tessier
GREMI, CNRS-Université d'Orléans, Orléans, France

A commercial heat probe is used for energy transfer measurements on copper and silicon substrates. To do so, the micro sensor has to be calibrated under high vacuum (~10-7 mbar), using a homemade black body as a heat source.Although the HFM is cooled at 5 oC, the solid surface temperature is unknown as the thermal contact resistance. Thus, COMSOL simulations are also used to obtain reliable ...

Benchmark between CPO (Charged Particle Optics) and COMSOL Multiphysics

J.-M. Barois, and C. Goulmy
PHOTONIS, Brive, France

Streak tubes are widely used in high-speed signal analysis; they give spatial, temporal and intensity information about one single event. Time resolutions of 0.7 pico-second can be achieved and in that time-domain, PHOTONIS tubes are second-to-none.Applications are numerous and range from plasma physic to femtosecond laser applications. In streak tubes, electrons move from the photocathode to the ...

Software Simulation of Electromagnetic Fields for Wood-Based Material Property Evaluation

X. Liu1, J. Zhang1, P. H. Steele1, and J. P. Donohoe2
1Dept. of Forest Products, Mississippi State University, MS, USA
2Dept. of Electrical & Computer Engineering, Mississippi State University, MS, USA

A technique based on the interaction of electromagnetic (EM) fields with the dielectric material is used for the non-destructive evaluation of wood-based material properties. An understanding of how the electromagnetic field is affected by the wood properties is necessary in order to optimize the system performance based on the frequency of the EM field. The COMSOL Multiphysics software package ...

Computation of Airfoils at Very Low Reynolds Numbers

D. Bichsel1, and P. Wittwer2
1HESSO, Ecole d'Ingénieurs de Genève, Geneva, Switzerland
2DPT, Université de Genève, Geneva, Switzerland

We discuss a new numerical scheme involving adaptive boundary conditions which allows to compute, at very low Reynolds numbers, drag and lift of airfoils with rough surfaces; efficiently and with great precision.As an example, we present the numerical implementation for an airfoil consisting of a line segment. The solution of the Navier-Stokes equations is singular at the leading and trailing ...

Effect of Local Deformation on the Emission Energy of  Quantum Dots in a Flexible Tube

S. Kiravittaya[1], P. Cendula[2], A. Rastelli[2], and O. Schmidt[2]
[1]Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
[2]Institute for Integrative Nanosciences, Dresden, Germany

Strain induced by local deformation of a flexible micrometer-sized semiconductor tube is quantified by modeling a ball pressing on the tube wall. By changing the pressing condition, we are able to change the strain state of the tube wall incorporating self-assembled quantum dots (QDs) in the wall. The QD emission energy is calculated in COMSOL® by solving the Schrödinger wave equation ...

Clean Energy Technologies: Growing Need for Multiphysics Modeling

Iouri Balachov
Senior Scientist,
SRI International, Menlo Park, CA, USA

Iouri Balachov is a Senior Scientist at SRI International (Menlo Park, CA) where he is leading development of Direct Carbon Fuel Cell technology for clean and efficient power generation from coal, biomass, and a wide variety of carbon containing fuels. Prior to SRI he was an engineer at Westinghouse nuclear (Pittsburgh, PA), researcher at Penn State University (State College, PA), and researcher ...

Quick Search

2701 - 2710 of 3379 First | < Previous | Next > | Last