这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Electromagnetic Parameters Extraction for Integrated-Circuit Interconnects for Open Three Conductors with Two Levels Systems

S.M. Musa[1], M.N.O. Sadiku[1], J.D. Oliver[1]
[1]Prairie View A&M University, Prairie View, TX, USA

The accurate estimate of values of electromagnetic parameters are essential to determine the final circuit speeds and functionality for designing of high-performance integrated circuits and integrated circuits packaging. In this paper, a new quasi-TEM capacitance and inductance analysis of multiconductor multilayer interconnects is successfully demonstrated using the finite element method (FEM) ...

Fruit Optical Properties Assessment by Means of Spatially Resolved Spectroscopy

E. Madieta[1], V. Piron[2], A. Flament[1], J.P. L’Huillier[2], and E. Mehinagic[1]
[1]PRES L’UNAM, ESA, Grappe, Angers, France
[2]ENSAM Paristech, Angers, France

Since the invention of laser sources, understanding the interaction between the laser and biological tissues is a subject of great importance because of their medical applications in particular for diagnostic purposes. They recently found a growing interest in the sector of the arboriculture to check the fruits quality in a non-destructive way. In this work, we study the interaction between the ...

Optimized Design of Shielded Microstrip Lines using Adaptive Finite Element Method

P. Kakria[1], A. Marwaha[1], and M. S. Manna[2]
[1]Electronics & Communication department, SLIET Longowal, Distt. Sangrur, Punjab, India.
[2]Electrical & Instrumentation department, SLIET Longowal, Distt. Sangrur, Punjab, India.

In this paper, the attempt has been made to design and analyze single strip shielded Microstrip line with capacitive coupling. The main objective is to compute the capacitance per unit length of shielded Microstrip line using Finite Element technique. The computational and simulation work has been carried out with the help of FEM based COMSOL Multiphysics software. The shielded Microstrip ...

Theoretical Simulations of Silicon-On-Nothing (SON) Structures

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1], F. Hoffmann[2], L. Brencher[2]
[1]Technische Universität Dresden, Dresden, Saxony, Germany
[2]Infineon Technologies GmbH, Dresden, Dresden, Saxony, Germany

A novel technique for semiconductor manufacturing is introduced: Silicon-On-Nothing. This process consists of an initial cylindrical trench which has a shape evolution under certain conditions: high temperature (1100 °C), low pressure (10 Torr) and a non-oxidizing atmosphere such as hydrogen. These conditions enable a, mainly, surface diffusion phenomenon whose final result is an empty space ...

Modeling VRALA,The Next-Generation Actuator For High-Density, Tick Secondary Mirrors For Astronomy

C. Del Vecchio[1], G. Agapito[1], G. Tomassi[2], and E. De Santis[2]
[1]National Institute for Astrophysics, Arcetri Astrophysical Observatory, Firenze, Italy
[2]University of Cassino, Cassino, Italy

The next-generation of Extremely Large Telescopes adaptive optics systems require high-order, long-stroke, quite large deformable mirrors. Higher forces and greater actuator densities than the ones provided by the current technology are needed, still maintaining the severe accuracy and bandwidth requests. Based on a very simple magnetic circuit, providing a compact device, the VRALA actuator ...

Zero Dispersion Modeling in As2S3-Based Microstructured Fibers

P. Gagnon[1], H. Manouzi[1], M. El Amraoui[1], Y. Messaddeq[1]
[1]Laval University, Quebec City, QC, Canada

An important step in designing a microstructured optical fiber is the computation and management of its dispersion curve. It is well-known that computing chromatic dispersion can be done analytically for certain geometries (e.g. step-index fibers), but no such analytical methods is known in the realm of microstructured optical fibers. Figure 1, Figure 2, and Figure 3 illustrate cross-sections of ...

Simulation of Bio-medical Waveguide in Mechanical and Optical fields

Y. Xin[1], A. Purniawan[1], L. Pakula[1], G. Pandraud[1], P. J. French[1]
[1]Technology University of Delft, Delft, Netherlands

This paper presents a freestanding waveguide to achieve the goal of detecting anastomosis leakage after colon surgery. The freestanding part is a thin membrane consisting of TiO2 rib and SiN ridge. This freestanding waveguide is designed both mechanically and optically to maintain mechanical stability during fabrication and detection process, and at the same time guarantee the detection ...

Simulation Study in Design of Miniaturized MID-Infrared Sensors

B. Mizaikoff, X. Wang, and S.-S. Kim
Institut für Analytische und Bioanalytische Chemie
Universität Ulm
Ulm, Deutschland

Evanescent-wave optical waveguide is widely used as sensing platform for chemical/biological sensor applications. Our research group contributed to on-chip IR sensor technology and made recent progress in miniaturizing such devices utilizing quantum cascade lasers (QCL) in combination with planar GaAs/Al0.2Ga0.8As waveguides. Furthermore progress is reported toward microfabricated Mid-infrared ...

Untersuchung der Polarisationseigenschaften einer mikrostrukturierten optischen Faser unter dem Einfluss äußerer Belastung

A. Unger[1], and K.H. Witte[2]
[1] FH-Wiesbaden, Fachbereich Physikalische Technik, Rüsselsheim;
[2] FH-Wiesbaden, Fachbereich Elektrotechnik, Rüsselsheim

Mit Hilfe des Softwareprogramms COMSOL zur Modellierung physikalischer Vorgänge wurden die Polarisationseigenschaften einer mikrostrukturierten Singlemodefaser untersucht. Ausgangspunkt der Simulationen waren experimentelle Untersuchungen, nach denen diese Faser eine ungewöhnlich starke Doppelbrechung aufwies. Die Doppelbrechung der Faser und damit ihre Fähigkeit zur Polarisationserhaltung ...

Magnetic Liquids for Lab-on-a-chip and Rapid Diagnostics Applications

H. Köser
Yale University

In this presentation we outline our recent work on Magnetic Liquids, and the great number of application areas these are used. Ferrofluids are nanometer sized magnetic particles, covered by a surfactant, suspended in a carrier medium compatible with the surfactant material. Ferrofluids are applicable to a great and ever increasing number of application areas, such as: • Liquid Seals and ...

Quick Search