科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Fresh Produce Safety During Hydrocooling: An Engineering Model

A. Warning[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Hydrocooling is the process by which warm produce is chilled with water. The chilling of warm produce generates a negative pressure differential between the produce (warm) and (cold) water due to the condensation of water vapor inside the produce which forms a vacuum and can pull in contaminated water through an opening. A porous media based model of water infiltration was developed using a ...

Modeling Integrated Thermoelectric Generator-Photovoltaic Thermal (TEG-PVT) System

R. Kiflemariam[1], M. Almas[1], C. Lin[1]
[1]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

2D steady state heat conduction-electric current model was created in COMSOL Multiphysics® software to study the performance of thermoelectric generator-photovoltaic-thermal (TEG-PVT) system. Four different cases were studied in the paper. In case 1, PV cells without concentrator was simulated while in case 2, concentrator ratio range from 2 to 5 was utilized, In case 3, the convection heat ...

Calibration of a Geothermal Energy Pile Model

R. Caulk[1], J. McCartney[2], E. Ghazanfari[1]
[1]University of Vermont, Burlington, VT, USA
[2]University of Colorado, Boulder, CO, USA

In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two purposes, first to transfer building load into the subsurface, but also to extract thermal heat from surrounding soils. This is achieved using a heat pump coupled with embedded heat exchangers. As a result, a multiphysics problem is introduced - heat ...

Analysis of 3D Biocompatible Additive Structure Using COMSOL Multiphysics® Software

E. Lacatus[1], M. A. Sopronyi[2], G. C. Alecu[1], A. Tudor[1]
[1]Polytechnic University of Bucharest, Bucharest, Romania
[2]INFLPR -National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania

For biocompatible prosthetics, from dental implants up to bone parts, manufacturers have to find the best way to correlate process parameters and the material properties as to meet the unique needs of individuals. Additive manufacturing techniques aim at creating complex biocompatible structures able to overcome the present shortfalls of the metal and metal alloys implants related to ...

Heat Transfer in Borehole Heat Exchangers from Laminar to Turbulent Conditions

E. Holzbecher[1], H. Räuschel[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

Borehole heat exchangers (BHE) in connection with heat pumps and floor heating in many countries are becoming an alternative to conventional heating or cooling systems using fossil resources. We describe how 1D components for heat transport in pipes can be coupled with a 2D or 3D component for the ground. Thermal conductances are derived for laminar, transitory and turbulent flow conditions in ...

Computational Building Physics using Comsol: Research, Education and Practice

J. van Schijndel
Eindhoven University of Technology,
Eindhoven, The Netherlands

Jos van Schijndel completed his MSc in 1998 at the Department of Applied Physics at the Eindhoven University of Technology (TUe). In 2007 he obtained a PhD degree at the TUe on integrated heat, air and moisture modeling. Currently, he is assistant professor focusing on Computational Building Physics. His passion is creative computational modeling using state of art scientific software and ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

Modeling of a Counter Flow Plate Fin Heat Exchanger

R. Jia[1], J. Hu[1], X. Xiong[2]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA

Plate fin heat exchangers are widely used for heat recovery or cooling purposes in many industries, such as cryogenics, aerospace and automobile industries. This paper developed a numerical model to simulate the heat transfer and fluid flow in a counter flow plate fin heat exchanger and optimize its design parameters. The conjugate heat transfer in the finned plate and fluids in the channels ...

Heat Transfer in Crossflow Heat Exchangers for Application with Microreactors

R. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

This paper explores methods of improving the heat transfer coefficient in a crossflow heat exchanger as would be employed in conjunction with an experimental or production microreactor. This derivation of the Cross-Flow Heat Exchanger from the COMSOL Multiphysics® software Model Library modifies the substrate geometry by adding two additional layers and uses the material copper in certain ...

Numerical Simulation of Thermal Runaway in a THz GaAs Photoconductor

S. Sarodia[1,2], W. Zhang[2], E. Brown[2]
[1]Centerville High School, Dayton, OH, USA
[2]Wright State University, Dayton, OH, USA

Ultrafast terahertz photoconductor devices, especially photomixers, are usually limited in output power by device failure thought to be caused by excessive temperatures. Therefore, understanding of thermal breakdown is essential to the study of device reliability and failure of photoconductors. We performed a series of simulations to determine the electronic and thermal thresholds responsible ...

Quick Search