科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

CO2 capture by means of chemical looping combustion

Pavone, D.
IFP, Lyon, Vernaison, France

In a search of concepts for innovative reactors allowing CO2 capture in gas turbine, monolith based chemical looping combustion has been identified as a promising concept. A precise simulation of the chemical looping combustion in a channel of monolith is developed to define the design rules and the material specifications. The objective is also to evaluate this innovative process in terms of ...

The influence of air humidity on the interaction between VOC and construction materials

Radulescu, C., Chicina, A.
LEPTAB

The subject of our study belongs to the large area of studies about the analyze and the prediction of indoor air quality. One of the actual weaknesses for the appreciations of air indoor quality is the lack off knowledge about the interactions between the pollutants and the materials (emission off VOC, adsorption). Knowing the behavior of construction materials we can figure out the possibility ...

Numerical Simulation of pH-sensitive Hydrogel Response in Different Conditions

M.K. Ghantasala[1], B.O. Asimba[1], A. Khaminwa[1], K.J. Suthar[2], D.C. Mancini[3]
[1]Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI, USA
[2]Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
[3]Physical Sciences and Engineering, Argonne National Laboratory, Argonne, IL, USA

The understanding of pH-sensitive hydrogel swelling response in different buffer environmental condition is essential for its use in different practical applications. This necessitates its simulation in steady state and transient conditions. This paper mainly deals with the details of the numerical simulation performed by developing coupled formulation of chemo-electro-mechanical behavior of the ...

Turbulent Compressible Flow in a Slender Tube

K.O. Lund[1], C.M. Lord[2]
[1]Kurt Lund Consulting, Del Mar, CA, USA
[2]Lord Engineering Corp., Encinitas, CA, USA

Pressure-drop experiments were conducted for the turbulent, compressible flow of air in a small, slender tube, and modeled with COMSOL heat transfer module, and analytically. A scalar integration variable is introduced which integrates the mass velocity [kg/m²s] over the inlet area and iteratively equates this to the input mass flow [kg/s]. For computation, the temperature specification is ...

Fluid Flow and Heat Transfer Characteristics in a Stirred Cell System for Crude Oil Fouling

M. Yang[1], A. Young[1], and B. Crittenden[1]

[1]Department of Chemical Engineering University of Bath, Bath, United Kingdom

A small batch stirred cell which is operated at temperatures up to 400 °C and pressures up to 30 bar is used to study fouling behaviors of selected crude oils. COMSOL Multiphysics package is used for the CFD (Computational Fluid Dynamics) and heat transfer modeling for this stirred cell system. The simulation results are validated against the measured temperature data at various axial ...

A theoretical and experimental analysis of membrane bioreactors behavior in unsteady-state conditions

Curcio, S.
Department of Chemical Engineering and Materials University of Calabria, Rende (CS), ITALY

The behavior of hollow fiber membrane bioreactors operating in recycle configuration is characterized from both theoretical and experimental point of view. The theoretical model is based on the unsteady-state balance equations governing momentum and mass transfer within the regions that can be identified in a hollow fiber reacting system with immobilized enzyme, coupled to the unsteady-state mass ...

Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion

D. Dalle Nogare[1] and P. Canu[1]

[1]Department of Chemical Engineering Principles and Practice, University of Padova, Padova, Italy

This work investigates the effects of boundary conditions on the species profiles in heterogeneous catalysis, with low Péclet systems. Hydrogen combustion in Helium was chosen because of the high diffusivities. Furthermore, already at T=300°C over a Pt catalyst, kinetics is very fast and the composition gradients at the inlet extremely steep. The issue is analyzed with 1D models, ...

Simulation and Design of a Microfluidic Respirometer for Semi-Continuous Amperometric Short Time Biochemical Oxygen Demand (BODST) Analysis

F.J. del Campo[1], A. Torrents[1], J. Mas[2], F.X. Muñoz[1]
[1]Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
[2]Departement de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Introduction: This work presents the design of a novel flow cell based miniaturized electrochemical respirometer to monitor organic content in water samples semi-continuously, in contrast to current Biochemical Oxygen Demand, BOD, methods. Simulation techniques has been used to parameterize and optimize aspects such as height and length of the channels, materials and thickness, flow and oxygen ...

Simulation of Differential Ion Mobility (DMS) Principle Coupled with Mass Spectrometry in Atmospheric Pressure

F. Sinatra[1], T. Wu[2], A. Avila[2], E. Nazarov[1], T. Evans-Nguyen[1], J. Wang[2]
[1]Draper Laboratory, Tampa, FL, USA
[2]University of South Florida, Tampa, FL, USA

Mass spectrometry is an analytical technique widely used in the scientific community to determine chemical composition of sample compounds. Typically, mass spectrometers perform their analysis under vacuum conditions, though atmospheric pressure mass spectrometers are becoming more prevalent. With the development of atmospheric pressure mass spectrometers, techniques such as FAIMS (Field ...

2D multiphysics CFD modeling of an ARP carbothermic reactor

Gerogiorgis, D.I.
Centre for Process Systems Engineering, Imperial College, South Kensington, London, U.K.

Carbothermic reduction is an alternative to the conventional Hall-Héroult electrolysis process, characterized by cost and environmental advantages, and challenging complexity. Process technology encompasses a wide spectrum of phenomena (convection, diffusion, reaction, evaporation, electric field) that occur simultaneously in a multiphase configuration, the geometry of which is an open design ...

Quick Search