科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

S. De Paolis[1], F. Lionetto[1], and A. Maffezzoli[1]

[1]Department of Innovation Engineering, University of Salento, Lecce, Italy

Finite element analysis has been used to model the ultrasonic wave propagation both in a custom made transducer and in the tested polymer sample. The model consists of acoustic (passive elements) and electroacoustic (active elements) transmission lines. The simulation of the acoustic propagation accounts for the interaction between the transducer and the materials in the buffer rods, and the ...

Fatigue Damage Evaluation on Mechanical Components under Multiaxial Loadings

R. Tovo[1] and S. Capetta[1]
[1]Dipartimento di Ingegneria, Università degli Studi di Ferrara, Ferrara, Italy

This paper is concerned with the fatigue behavior of complex, three-dimensional, stress concentrations under multiaxial loadings. Starting from the stress field obtained from a linear elastic analysis and taking advantage of the so-called implicit gradient approximation, an effective stress index connected with the material strength is calculated. Besides, this work summarizes a first ...

Numerical and Experimental Study of a Concentrated Indentation Force on Polymer Matrix Composites

V. Antonucci[1][2], M. Esposito[1], R. Marzella[2], and M. Giordano[1][2]
[1]Institute for Composite and Biomedical Materials, CNR, Portici, NA, Italy
[2]Imast, Portici, NA, Italy

A quasi static indentation test on a laminate composite has been investigated numerically and experimentally. In particular, the test has been implemented by COMSOL Multiphysics® and optimizing the Finite Element and mesh. In addition, the numerical strain results have been validated by the comparison with the respective experimental deformation data that have been obtained by fiber Bragg ...

Level Set Method for Fully Thermal-Mechanical Coupled Simulations of Filling in Injection and Micro-Injection Molding Process

M. Moguedet[1], R. Le Goff[1], P. Namy[2], and Y. Béreaux[3]
[1]Pôle Européen de Plasturgie, Bellignat, France
[2]SIMTEC, Grenoble, France
[3]INSA de Lyon, Site de Plasturgie, Bellignat, France

In this work we tackle a more theoretical aspect of micro-injection molding, to better understand physics during the process, through numerical simulations of cavity filling. We developed a two phase flow approach by the use of COMSOL Multiphysics®. In a first step, a Level Set model is applied to several configurations: Newtonian and non Newtonian fluid (Cross viscosity law), coupled with a ...

Multiphysics Modelling of Food Dehydration during RF Exposure

R. Renshaw[1]
[1]e2v Ltd., Essex, United Kingdom

There is a requirement for an RF (Radiofrequency) industrial dryer that will be capable of dehydrating foodstuff to the correct level after the product has been fried. RF drying should actively target moisture, due to waters high dielectric properties. An industrial dryer can be optimized using modeling to obtain the correct moisture removal rates in the RF drying process. Measurement of the ...

Numerical Modelling of a Free-Burning Arc in Argon. A Tool for Understanding the Optical Mirage Effect in a TIG Welding Device

J-M. Bauchire[1], E. Langlois-Bertrand[1], and C. de Izarra[1]
[1]GREMI, CNRS, Université d’Orléans, Orléans, France

In this paper, we present the numerical modelling of a free-burning arc and its application to the understanding of optical mirage effect which could occur in a TIG (Tungsten Inert Gas) device used in welding applications.

A Novel FEM Method for Predicting Thermoacoustic Combustion Instability

G. Campa[1] and S.M. Camporeale[1]
[1]DIMEG, Politecnico di Bari, Bari, Italy

Modern gas turbines suffer of the phenomenon of combustion instability, also known as “humming”. The main origin of the instability is considered to be related to the interaction between acoustic waves and fluctuations of the heat released by the flame. This paper presents a novel numerical method in which the governing equations of the acoustic waves are coupled with a flame heat ...

Multiphase, Dual Polymer Injection Molding and Cooling of an Open Cavity to Form both Distinct and Graduated Material Properties within a Complex Three-Dimensional Body

M.S. Yeoman[1]
[1]Continuum Blue Ltd, Forest Row, United Kingdom

With the advancement of medical devices and implants, many now require more advanced nonlinear, hyper-elastic materials such as elastomers to be extensively utilized in the body. This combined with the need to allow for considerably different, varying and graduated material responses within the three-dimensional device, poses a difficult challenge to manufacturing an elastomeric implant in a ...

Optimization of an Acoustic Waveguide for Professional Audio Applications

M. Cobianchi[1] and R. Magalotti[1]
[1] B&C Speakers S.p.a., Bagno a Ripoli, FI, Italia

In modern live sound reinforcement there is a growing use of line sources, obtained through the stacking of many loudspeakers with properly controlled wavefront shape. Thus the use of waveguides is mandatory in order to modify the shape and size of the wavefront exiting from professional compression drivers. With the help of COMSOL Multiphysics®, we have designed a waveguide featuring an ...

Transport Phenomena and Shrinkage Modeling During Convective Drying of Vegetables

S. Curcio[1] and M. Aversa[1]
[1]Department of Engineering Modeling, University of Calabria, Arcavacata di Rende, CS, Italy

The aim of the present work is the formulation of a theoretical model describing the transport phenomena involved in food drying process. The attention has been focused on the simultaneous transfer of momentum, heat and mass occurring in a convective drier where hot dry air flows, in turbulent conditions, around the food sample. The proposed model does not rely on the specification of interfacial ...

Quick Search