科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Periodic Near-field Enhancement on Metal-Dielectric Interfacial Gratings at Optimized Azimuthal Orientation

M. Csete[1,2], X. Hu[1], A. Sipos[2], A. Szalai[2], A. Mathesz[2], and K. Berggren[1]

[1]Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, Massachusetts, USA
[2]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary

The effect of plasmon-wavelength scaled gratings on the surface plasmon resonance is studied experimentally and theoretically. The model samples are multi-layers containing laser fabricated gratings at bimetal-polymer interfaces. Dual-angle dependent surface plasmon resonance measurements are performed illuminating the samples by monochromatic light in Kretschmann arrangement. The ...

2D Extraction of Open-Circuit Impedances of Three-Phase Transformers

R. Escarela-Perez[1], E.A. Gutierrez-Rodriguez[2], J.C. Olivares-Galvan[1], M.S. Esparza-González, and E. Campero-Littlewood[1]


[1]Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, Mexico D.F., Mexico
[2]Instituto Tecnologico de Aguscalientes, Aguascalientes, Mexico

This work is concerned with the study of the asymmetrical phenomenon observed in three-phase transformers during the standard short-circuit test. The purpose of our work is to see if the asymmetric measurements can be predicted with the use of 2D finite-element models. To this end, we use the AC/DC Module of COMSOL Multiphysics. A multi-port network impedance is then determined to explain the ...

Numerical Study of the Electrical Properties of Insulating Thin Films Deposited on a Conductive Substrate

R.A.Gerhardt[1], and S. Kumar[1]
[1]School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

Parametric finite element simulations were performed to study the effect of film thickness, and electrode size on the different impedance parameters for insulating thin films deposited on a conductive substrate. COMSOL Multiphysics® was used to solve the quasi-static form of Maxwell’s electromagnetic equations in time harmonic mode. Several types of 2D models (linear and axisymmetric) ...

Modeling Flow of Magnetorheological Fluid through a Micro-channel

N.M. Bruno[1], C. Ciocanel[1] and A. Kipple[2]
[1]Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, USA
[2]Dept. of Electrical Engineering and Computer Sciences, Northern Arizona University, Flagstaff, Arizona, USA

This paper presents the approach taken through the utilization of COMSOL Multiphysics 3.5a, to develop a model that simulates the flow of a magnetorheological (MR) fluid through a micro-channel. The model was developed as an aid in the analysis of a micropump that produces flow by means of displacement of a MR fluid slug within a microchannel.

Modeling Hydrogen Permeation through a Thin TiO2 Film Deposited on Pd

Z. Qin[1], Y. Zeng[1], and D.W. Shoesmith[1]

[1]The University of Western Ontario, London, Ontario, Canada

Models that describe hydrogen permeation through a thin TiO2 film deposited on Pd have been developed based on a mass-balance equation consisting of diffusion, reversible hydrogen absorption/desorption, and irreversible hydrogen trapping. These models are solved by the finite element method using COMSOL Multiphysics. By comparing model simulations with experimental permeation curves, values of ...

Analysis of Forces acting on Superparamagnetic beads in fluid medium in Gradient Magnetic Fields

U. Veeramachaneni[1], and R.L. Carroll[1]

[1]Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA

Superparamagnetic micro beads offer some  attractive applications in biological and biomedical fields. Some of the important applications include manipulation and separation of cells, isolation of specific cells, active drug delivery, magnetic cell separation, separation of proteins, and application of mechanical forces to cells, etc. A COMSOL Multiphysics model is developed in 2D ...

Two-Dimensional COMSOL Simulation of Heavy-Oil Recovery by Electromagnetic Heating

M. Carrizales[1], and L.W. Lake[1]

[1]The University of Texas at Austin, University Station, Austin, Texas, USA

Introducing heat to the formation has proven to be an effective way of lowering the oil viscosity of heavy oils by raising the temperature in the formation. The application of electrical energy has gained more interest during the last decade because it offers fewer restrictions for its successful application compared to the conventional steam flooding methods. Although this recovery technique ...

Model of a Filament Assisted CVD Reactor

J. Brcka[1]

[1]TEL US Holdings, Inc., Technology Development Center, Albany, New York, USA

In this presentation we are dealing with the computational fluid model of a Filament Assisted Chemical Vapor Deposition (FACVD) reactor. Proposed strategy in this study involved several steps: (a) development a computational model for FACVD process capable to describe and obtain with reasonable accuracy all relevant phenomena occurring in the reaction chamber; (b) validation the computational ...

Software Package for Modeling III-Nitride QW Laser Diodes and Light Emitting Devices

M. V. Kisin[1], R. G. W. Brown[1], and H. S. El-Ghoroury[1]
[1]Ostendo Technologies, Inc., Carlsbad, CA, USA

We present a modeling software package developed at Ostendo Technologies for analysis and design of semiconductor laser and light-emitting diodes. The current database of material parameters supports complete group of III-Nitride alloys used in visible spectrum applications and can be readily extended to all III-V compounds. Self-consistent multi-band quantum-mechanical model for carrier energy ...

Newtonian and Non-Newtonian Blood Flow over a Backward-Facing Step: Steady-State Simulation

M.W. Siebert[1], and P.S. Fodor[1]
[1]Physics Department, Cleveland State University, Cleveland, Ohio, USA

In this work, the fluid flow over a 2D backward-facing step is analyzed in order to provide a case study for the use of different models for the blood dynamic viscosity in COMSOL Multiphysics. Three non-Newtonian models, as well as the Newtonian model are used to study the shear stresses and the reattachment length as a function of the fluid speed. The non-Newtonian models used in this study are ...

Quick Search