科技论文和展示

这里您可以找到在全球 COMSOL 年会上所有用户报告的演示文稿。这些演示文稿介绍 COMSOL 用户是如何使用 COMSOL Multiphysics 进行创新性研究和产品设计。研究主题涵盖了包括电气、机械、流体和化工等范围广泛的行业和应用领域。请使用“快速搜索”来查找与您的研究领域相关的演示文稿。

Pedagogic use of COMSOL Multiphysics for Learning Numerical Methods and Numerical Modeling

J-M. Dedulle
L'ecole Nationale Supérieure de Physique de Grenoble

The students at ESPNG have, since 2002, been using COMSOL Multiphysics in order to master physical phenomena and the finite element method. We developed several projects based on the modeling of physics phenomena, and, in this paper, we present projects based on Physical Vapor Transport and Magnetic Levitation. --------------------------------- Keynote speaker's biography: Jean-Marc ...

Numerical Simulation of Moving Boundary Problems with the ALE Method: Validation in the Case of a Free Surface and a Moving Solidification Front

M. Carin
Université de Bretagne Sud

This work investigates numerical simulations of problems involving moving boundaries. The first case concerns the simulation of incompressible Newtonian fluid flow problems with free surfaces in the presence of surface tension (the sloshing problem). The second case deals with a problem of heat transfer in the presence of an advancing solidification front (the Stefan problem).

Thermal Modelling of Metal Surface Texturing by Pulsed Laser

J.M. Jouvard[1], A. Soveja[1,2], and N. Pierron[1]
[1] Laboratoire Laser et Traitements des matériaux, Université de Bourgogne, Le Creusot
[2] Faculté de Génie Mécanique, Université Politehnica Timisoara, Romania

Our work is to improve the surface texturing process by laser irradiation. In this study, thermal modelling of the laser-matter interaction for a single laser impact case is presented. A 1D modelling was carried out. The purpose was to determine the dimension of the liquid layer and the ablated matter volume. The model accounts for the evolution of material thermodynamic properties, the ...

3D Inductive Phenomena Modelling

R. Ernst[1], D. Perrier[2], J. Feigenblum[2], and R. Hemous[2]
[1] EPM - CNRS
[2] Roctool

This paper deals with the Cage System, developed by Roctool, which heats and transforms composite materials. The simulation shows the importance of the inductor design and position relative to the mold.

Using COMSOL for Studying the Occurrence of a Constant-shaped Concentration Front in the Retention of Gaseous Pollutants by Adsorption Columns

A. Joly[1], V. Volpert[1], and A. Perrard[2]
[1] Université de Lyon
[2] Institut de Recherches sur la Catalyse, Lyon

Various models, based on mass transfer and different isothermal adsorption equilibrium laws, are developed using COMSOL Multiphysics. These isotherms are representative of the adsorption of various pollutant-adsorbent systems frequently found in decontamination processes. Consequences on breakthrough curves are examined and possible applications to decontamination processes are discussed.

Radiative Heat Transfer in an Infrared Oven

I. Bombard, P. Laurent, and J. Lieto
Laboratoire d’Automatique et de Génie des Procédés (LAGEP), UCB, Lyon

In this paper we use the COMSOL Heat Transfer Module to simulate the radiative and conductive heat transfer in an experimental oven fitted with electrical infrared emitters. In particular, we study paint curing temperature and compare our results to experimental data.

Numerical Simulations of Thixotropic Fluids

P. Dantan[1], and M. Faye[2]
[1] Université Paris7 Denis Diderot
[2] Université Paris11

In this paper, we introduce a kinetic equation coupled with the Navier-Stokes equations in COMSOL Multiphysics in order to simulate internal structural changes of a flowing complex fluid. Two physical applications are considered, the starting of blood flow in a stenosis and a simulation of a laboratory rheometric set-up. Results show good agreement with the experiments' well known ...

Finite Element Approach for Micromagnetic Systems

H. Szambolics[1], L. Buda-Prejbeanu[2], J.C. Toussaint[1,2], and O. Fruchart[1]
[1] Laboratoire Louis Néel, Grenoble
[2] Laboratoire SPINTEC, Grenoble

In this paper we propose a finite element model (FEM), to solve the micro-magnetic equations. Two bi-dimensional test problems are treated to estimate the validity and the accuracy of this approach.

MOCVD Research Reactor Simulation

H. Rouch
INOPRO, Villard de Lans

In this paper, we describe the methodology of modeling Metal Organic Chemical Vapor Deposition. As a special case study we investigate the Ag deposit.

From Numerical to Experimental Study of Microsystems for Dielectrophoresis on Bioparticles

P. Pham, I. Texier, and F. Perraut
CEA-LETI, Direction de la Recherche Technologique, Grenoble

This paper summarizes the numerical contribution to a project for the detection of bioparticles present in a small volume of a liquid sample. Dielectrophoresis (DEP) is used to enhance their transport toward the surface of a detector. The mathematical model is composed of the electrokinetics equation for the DEP force-field calculation, and the advection-diffusion equation for the particle ...

Quick Search

1 - 10 of 38 First | < Previous | Next > | Last