Optimizing Fuel Cell Design with COMSOL Multiphysics

Chin-Hsien Cheng[1]
[1]Renewable Energy RD Center, Chung-Hsin Electric & Machinery, Taiwan

Proton exchange membrane fuel cells (PEMFCs) were investigated using COMSOL Multiphysics with the AC/DC Module and Chemical Engineering Module. Simulation may be used to increase the performance while decreasing the cost of the catalyst later (CL). Experimental validation of single and multi-layer CL was performed for varied PBI electrolyte content. The validated model was used to investigate the O2 distribution in the cathode and temperature distribution throughout the device. Resistivity to gas diffusion, effective platinum reaction area, and proton conductivity were also studied. An approach to multi-scale simulation using COMSOL Multiphysics was developed.