
OLD DOMINION UNIVERSITY

I D E A FUSION

Computational Fluid Dynamics Study of the Effects of Secondary Flows in 90-degree Pipe Elbow Erosion

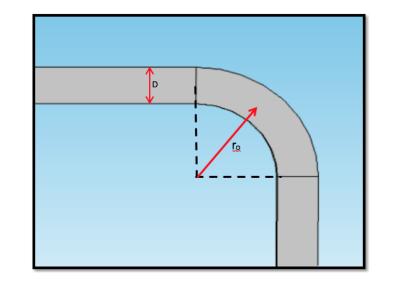
O. Ayala, G. Rivera-Hernández, C. Knight

COMSOL CONFERENCE 2020 NORTH AMERICA

October 7-8, 2020 CFD Session

Introduction

Bends can be found in many industrial pipe layouts


- Presence of secondary flows
- If particles → erosion might be found

- Current state of the knowledge is still far from having a full picture of the erosion phenomena
- Still using old erosion models based on material properties (or simple modifications of them)
 (Finnie, 1958; Bitter, 1963; Tilly, 1973, Nesic, 1991; Chase *et al.*, 1992; Jordan, 1998; Shirazi, 2000)
- It has been recognized that fluid-particle interactions play an important role (Humphrey J.A.C, 1990 and 1993)

Physical Model

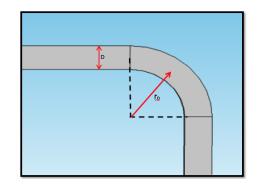
Radius of Curvature (RC)
1.0, 1.5, and 2.5
Reynolds Number
1,000 and 10,000

• Stokes Number
$$S_t = \frac{\tau_p V}{L} = \frac{\tau_p}{T_k}$$

0.01, 0.1, 0.5, 1.0, 5.0, and 10.0

$$\tau_{\rm p} = \frac{\rho_p d_p^2}{18\mu_f}$$

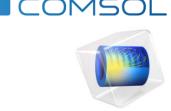
Mathematical and Numerical Model


$$\begin{aligned} \rho \frac{\partial \mathbf{v}}{\partial t} + \rho \mathbf{v} \cdot \nabla \mathbf{v} &= \mu \nabla^2 \mathbf{v} - \nabla P \\ \nabla \cdot \mathbf{v} &= 0 \\ \mathbf{k} \cdot \boldsymbol{\varepsilon} \text{ model} \end{aligned}$$

- OUTLET Constant pressure
- WALL Non-slip or Wall functions
- STRAIGTH PIPES Long enough (sensitivity)

MESH SENSITIVITY (normal mesh→5% diff, y⁺~12)

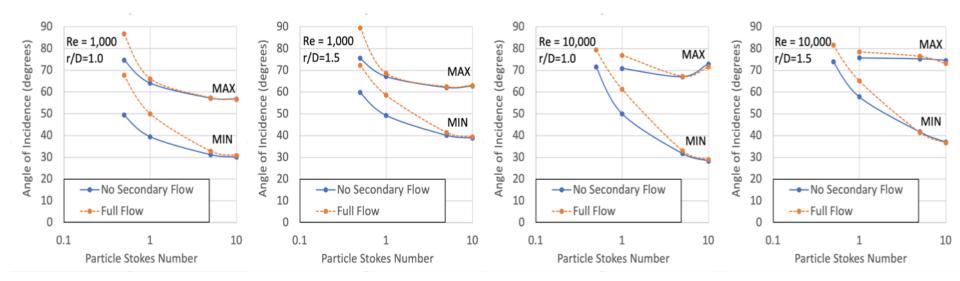
VALIDATION (Niazmand and Jaghargh, 2010)


Mathematical and Numerical Model

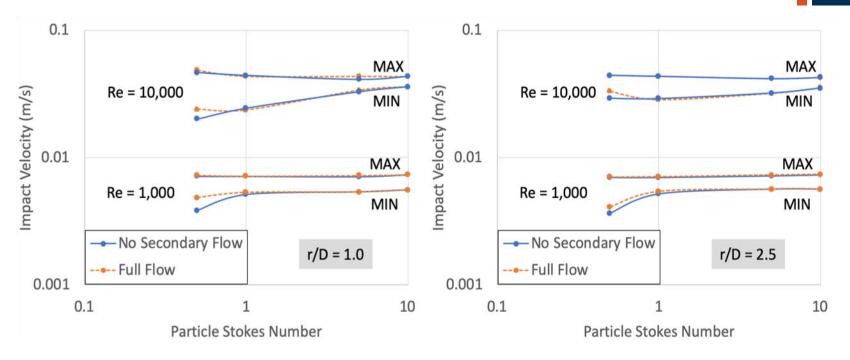
$$\frac{d\mathbf{q}}{dt} = \mathbf{v}$$
$$\frac{d}{dt}(m_p\mathbf{v}) = \sum \mathbf{F}$$

- Schiller-Naumann Drag model
- One-way coupling
- Wall set to freeze (required condition to compute erosion)
- Particles introduced through 50% concentric reduce area
- Finnie's model for erosion

The "fluid flow velocity components" felt by particles in elbow was modified

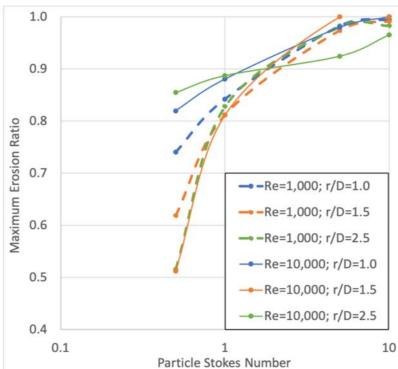


Results


(1) Angle of Incidence for the "No Secondary Flow" and the "Full Flow" Cases

The Case for r/D=2.5 Shows Similar Behaviors

Results


(2) Impact Velocity for the "No Secondary Flow" and the "Full Flow" Cases

The Case for r/D=1.5 Shows Similar Behaviors

Results

(3) Ratio of the "No Secondary Flow" Case Maximum Erosion to the "Full Flow" Case Maximum Erosion

Conclusions

- Secondary flows do not affect much the erosion when the particle Stokes number is high (close to 10).
- A significant 20% to 50% reduction on the erosion is observed when Stokes number is less than one. Angle of incidence effect.
- The magnitude of the erosion reduction depends on the Reynolds number and radius of curvature.
- This study serves as a preliminary insight to the effects of curvature ratio, Stokes number, and Reynolds number in relation to the significance of secondary fluid flow on erosion in a 90degree pipe elbow.