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Simplification

 

Reynolds equation

 

is

 

employed: valid

 

for

 

I >> hgap

Problem Description

Complication

 

2
finite size:

pressure

 

drop 
at the

 

boundary
pBoundary

 

≠pAmbient

Complication

 

1
perforations:
loss

 

of fluid

Problem description:
1. calculate pressure underneath moving plate
2. calculate damping from pressure

Complication

 

3
deformable
membranes:

h=f(x,y)
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channel

 

flow:
dominating

 

for
thick

 

plates
and/or

 

small

 

holes

orifice

 

model:
dominating

 

for
thin

 

plates
and/or

 

large holes

Reynolds equation

finite size

 

effects:
additional pressure

 

drop
at the

 

boundary
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fluidic
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modeling
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region

R R

Mixed-Level
Model (MLM)

C1 & C2: Mixed-level
 

Damping
 

Model (1/2)

Framework for the model: Generalized

 

Kirchhoffian

 

network

 

theory
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C1 & C2: Mixed-level
 

Damping
 

Model (2/2)

Features: • Discretized

 

system-level

 

model
• Physics-based

Boundary
resistance:

1
2

384.0 −Ψ⋅⋅= B
ii

B lh
R πη

geometry

 

and material parameters

 

only

Correction

 

for

 rarefied

 

gas 
effects
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C3: Modal Superposition

Deformable

 

membranes

 

are

 

modeled

 

by

a superposition

 

of mechanical

 

eigenmodes:

…

Φ1 Φ2

Φ3

Φm

h h

MAPPING
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General Workflow

- Open .mph file
- Analysis of FEM data
- MLM generation
- Save as .class file

- Model mechanical structure
- Include residual stresses
- Eigenfrequency analysis
- Save as .mph

C
O

M
S

O
L

TO
O

LB
O

X

JAVA

- Open .class file
- Run simulation
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Toolbox: GUI & Algorithms

algorithms for
topography

analysis

automated
generation of
mixed-level

model

holes
boundary

Toolbox Algorithms
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Experimental Setups

white

 

light interferometer
(Veeco WYKO NT1100 DMEMS)

• static measurements

→ Allows

 

for

 

dynamic

 

measurements

 

at varying

 

ambient pressure

 

conditions

laser

 

scanning

 

vibrometer
(Polytec MSA-500 [customized])

• dynamic measurements
• pressure chamber

Q is

 

calculated

 

from

 
frequency

 

domain

 

(3dB-bw)

Verification

 

of device

 
dimensions
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Benchmark
 

vs. Alternative Models
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Conclusion

• Toolbox for

 

the

 

modeling

 

of SQFD in MEMS:
• Based on Generalized

 

Kirchhoffian

 

network

 

theory
• Uses the mixed-level

 

modeling

 

approach
• Employs physics-based

 

models
• Is extendible
• Exploits the functionality of the COMSOL API
• Allows easy-to-use

 

automated

 

model

 

generation

• Experimental evaluation:
• Two devices were investigated
• Excellent agreement with measurements:

• Maximum error

 

of 7%

 

at normal pressure

• Benchmark:
• Two alternative compact models were investigated
• Minimum error

 

of alternative models is 26%

 

at normal pressure
• Automatically generated mixed-level

 

model

 

performs better
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Thank you for your attention!Thank you for your attention!
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Sattler R, DTIP, 2004.

MLM: Details

B
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R πη

659.0

238.05.0

471.21
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D
RB

Boundary

 

resistance:

Sattler R, PhD thesis, 2007.

with

1
3

12 −Ψ⋅= R
ikik

ik
R hb

rR η 159.1638.91 KnR +=Ψ

Reynolds regime

 

resistance:

with
Sattler R, PhD thesis, 2007 and Veijola T, S&A, 1998.

→ Models are

 

physics-based
→ Models have

 

geometry-based

 

and material parameters

 

only

 

(no fit!)
→ Corrections

 

factors

 

account

 

for

 

rarefied

 

gas effects

 

(is

 

fit!)
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Teststructures

B1              B2              B3               B4

A1 A2 A3 A4 A5 A6

Summary

 

of geometrical

 

parameters:
• number of holes: 18 .. 903
• hole size: 13 µm .. 20 µm
• plate thickness: 5 µm .. 15 µm
• perforation level: 23% .. 47%
• gap: 2 µm .. 3 µm
• frequency: 14 kHz .. 44 kHz

RFS
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MLM Toolbox Implementation

 

of Veijola‘s

 
mixed-mode

 

model

 

of SQFD 
for

 

perforated

 

plates
in COMSOL 3.5a

Formulation
Modeling

Autom. Model Gen.
Condensation

Number

 

of DOFS

Flux-conserving
Physics-based

Yes
Possible
~2300

FEM-based -> Potential
Heuristic

No
No

>> 2300
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