
Advanced Applications of an Automated Generative Tool for
MEMS Design Based on COMSOL Multiphysics

Francesca Bolognini*,1

1University of Cambridge Engineering Department,
Trumpington street, CB2 1PZ Cambridge, UK

fb252@cam.ac.uk

Abstract: This work presents a different use
of COMSOL, not only as a simulation
platform for engineering tasks, but also as an
integrated component of a computational AI
tool framework used to automate designs
creation. CNS-Burst is a computational
synthesis method used to create solutions to an
assigned design task. This search method,
iteratively applied, finds design alternatives
and represents them as geometrical objects. In
this context, COMSOL is integrated in the
method and used to evaluate the performance
of the design solutions found. Geometrical
objects are transformed in COMSOL objects
for analysis and simulations. In this work we
have looked at case studies for which industry
is interested in finding innovative solutions in
a short timeframe. We also looked at a design
field that could be accurately analysed using
COMSOL. The design field here examined are
MEMS. In particular, the case study chosen
are sandwich resonators. This paper can be of
interest not only to see how COMSOL has
been used in this innovative academic project,
but also to explore how MEMS design
innovation is investigated.

Keywords: Computational Design Synthesis,
Automated design, simulation-based design,
optimisation, MEMS, COMSOL from Matlab
command.

1. Introduction

 This work presents the use of COMSOL as
part of a computational platform oriented at
automating the creation of design solutions for
an assigned design task. This research is one of
the many academic efforts in the field that
goes under the name of Computational Design
Synthesis (CDS). Computational synthesis
methods have been around since few decades
now and a vast research background is slowly
changing into initial industrial applications in
many fields of engineering [1]. The ultimate
goal of computational synthesis is to give
support to designers in the creative phase of
the design process, i.e. automatically
generating designs through the computational
simulation of designers’ creative effort. The

automation of this phase of the design process
(synthesis) includes many of the activities that
designers carry on in common practice, and of
course comprises some elements of AI. The
advantage of creating an automated generative
design tool is the possibility to boost
innovation creating solutions that go beyond
designers’ insight, regardless of their
experience and bias. Another advantage is the
possibility to speed up the design process.
Computational synthesis methods often find an
obstacle to their development in the difficulty
of integrating in the automated search of
solutions external packages for the
analysis/simulation of the designs generated.
The main difficulty is that the analysis has to
be performed automatically and
simultaneously with the generation of
solutions, so that they can be assessed as valid
or non-valid and, in case, kept or discarded. In
particular, the method developed in this work
set a step ahead in the research field, as a
complete and complex analysis tool
(COMSOL) used by professional engineers is
integrated in the search. This choice guarantees
accurate and reliable solutions ready to be
manufactured. What is of interest here is how
the integration is performed and till what point
COMSOL is a necessary tool for the success of
the method. COMSOL has been chosen for its
completeness and flexibility as an analysis
tool. It is also important to see how the method
is applied to MEMS, the case study of choice.
MEMS are particularly indicated, due to the
industry interest they raise and to continuous
market’s request for innovative MEMS
solutions. In fact MEMS design is still
performed by hand through complex iterative
processes. For this reasons, many academic
attempts have been carried out to automate
MEMS design process. The one presented here
has been successfully completed and, at the
same time, presents a new type of
microresonators called ‘sandwich’, which are
of interest to a major European electronic
company.

2. The Method
 The aim of computational synthesis
methods is not just to find the best possible

solution to a design problem: their emphasis is
rather on creating design solutions that are,
possibly, new design alternatives. Synthesis as
a method contrasts with traditional
optimisation in that the goal of synthesis is
more broadly to capture, emulate and/or utilise
design decisions made by human designers
during the creative process. Computational
synthesis methods are complex products that
do not just automate the optimisation of
solutions. Their scope goes much beyond that,
extending the concept of search of optimal
designs with methods for creating solutions to
propose to the optimisation. There is no exact
formulation to implement synthesis methods,
but there is agreement in the computational
synthesis community that they can be
considered as a set of distinct activities [2].
Hence, in order to develop such tools, a
systematic approach is needed. The framework
in Figure 1 provides the sequence of necessary
steps for transforming the design process into
an algorithmic solution. This is the sequential
framework of activities used for the
implementation of the method used in this
work (CNS-Burst). The steps of this
framework are fundamental and necessary
milestones of an automated synthesis process.

Figure 1. Systematic Approach to Computational
synthesis: steps of CNS-Burst method.

The first step is the definition of the task,
which includes the mathematical formulation
of the problem and search objectives. The

search for solutions can start from an initial
design, which can be an existing well-known
solution or an estimated idea of what the
solution is going to be like. The search can
also start from a basic component of the
design, or even from nothing in some cases.
The next step is the generation of a novel
solution: new ideas and past knowledge are
recalled at this stage, together with some
insights on how to modify design components
and behaviours that do not meet the desired
objectives. Elements of optimisation and
artificial intelligence are used at this stage. In
order to come out with the best possible
solution, designers usually do not stop their
search after their first intuition. Behaviour and
design objectives for each generated solution
are evaluated and compared with existing
solutions, in order to verify whether the new
design has come any closer to the desired
objectives of the search (Analysis). Solutions
that match design objectives are kept in an
archive for future comparison or just to form a
pool of results to be used by designers. This
generate-and-test mechanism (iterative cycle in
Figure 1) will be repeated until the solutions
gets close enough to the objectives of the
search or until time limits for the search are
reached.
According to the framework just described, it
is understandable how the implementation of
an automated synthesis method must follow a
general architecture. A synthesis method can
be thought of as a set of activities that follow
this framework. Each of these activities is
constituted by specific components (or set of
components) that, in this particular work, will
be called ‘modules’.

All the components of this architecture are
integrated into a general algorithm that directs
the synthesis process. The modules are linked
together through the main algorithm that
directs the search and calls the required
different modules following the logic
expressed by the framework in Figure 1. The
synthesis task is formulated as a design
optimisation task consisting of design
parameters, constraints and objectives.

In order to find feasible and optimised designs,
synthesis techniques are built on a search
algorithm, integrated with an evaluation
method. The generated designs are evaluated
according to desired design performance
criteria, stated as objectives of the search. The
evaluation might require complex analysis to

Formulation

Generation

Analysis

Evaluation

Decision

FInal
Solution(s)

simulate design behaviour, which is often
executed through external software embedded
in the search code. Analysis tools must be able
to perform rapid simulation of the designs’
behaviour and pass to the search code accurate
feedback on the designs’ performance. Also,
the design simulation must be performed
automatically after each design generation.
These requirements often encounter limitations
due to the impossibility of finding commercial
packages that are able to perform simulation in
the design domain. The choice may often be
limited to packages that are not optimal for the
design performance being analysed or do not
offer the level of accuracy needed. A second
problem in integrating external tools is the
difficulty of supporting multiple design criteria
based on multidisciplinary considerations,
hence the necessity of finding compatible
multidisciplinary analysis packages. Another
important problem is due to the impossibility
of integrating analysis tools easily and time-
efficiently. The necessity to perform accurate
analysis in order to obtain solutions as ready as
possible to be post-processed, led to the use of
COMSOL. In particular, the COMSOL
toolbox used in this work is the MEMS
toolbox for 3D eigenfrequency and static
analysis.

4. Use of COMSOL Multiphysics

 For the purpose of this work, the first
problem in the integration process has been to
automatically translate CNS-Burst design
objects created by the search generation
modules into COMSOL objects files (.m files),
containing the COMSOL geometry of the
design and ready to be analysed using the
MEMS analysis package.
A second problem encountered has been to
visualise the simulation behaviour
instantaneously every time a new design was
created and pass feedbacks results
automatically to the search. These problems
have been solved using COMSOL from API,
i.e. not through a user interface. COMSOL
API is written in Matlab. The CNS-Burst
search method, also implemented in Matlab, is
able to call COMSOL functions from the
Matlab command line, once the entire path of
COMSOL functions is loaded into Matlab
environment. The direct plug-in of an external
package into the search code is a far more
complex and time-consuming method than
using batch files, but allows the immediate
integration of feedbacks into the search.

4.1 Translation of Geometrical Objects into
Simulation Objects

 This section describes how the design
generated by the search code (the geometrical
model represented by CNS design
representation) is translated into a simulation
model (COMSOL object) to be evaluated by
COMSOL. In order to visualise the solutions
created, CNS-Burst method uses a
representation module that make s use of a
network of parts (called primitives) connected
through nodes (see Figure 2).

Figure 2. CNS-Design structure formed by
primitives and nodes.

Any CNS design is constituted by a set
primitives and nodes and matrices (the
NodeList matrix and the Connectivity matrix),
as described in Figure 3a. The primitive object
provides a description of the primitive in terms
of:
- Name of the primitive (Name)
- Maximum and minimum number of

instances of the primitive (MaxInstances,
MinInstances)

- Parameters (for example dimensions) and
maximum and minimum values of the
parameters (ParamLimits).

The nodes forming a design can be of different
nature. Matlab node objects (NodeDefinitions)
are described by the following fields (Figure
3.10a):
- Type of node (Name), e.g. anchor, floating,

roller, force applied, etc.
- Number of a node type that can be added

to/removed from the design (CanAdd,
CanRemove)

- Properties of the node that can be changed
(PropsChangeable)

- Maximum and minimum value of the
properties (PropLimits)

- Maximum and minimum number of
primitives connected to that node
(MaxConnects, MinConnects).

Connected Node System

Anchor Node

Floating Node

Primitive Type 1

Primitive Type 2

Primitive Type 3

Primitive Type 4

KEY

The NodeList matrix is a list of all the nodes
forming the design, with description of their
type (as defined in NodeDefinitions) and
position (Figure 3a). The Connectivity matrix
states connections between nodes and
primitives (Figure 3a). Each of its columns is
representative of a primitive and lists its
starting and ending nodes (connections).

Figure 3a. CNS Design (geometrical model).

The simulation model analysed by COMSOL
is a COMSOL object (Figure 3b), i.e. a Matlab
file containing information on:
- A list of all the building blocks (primitives

in CNS representation) forming a design,
and correspondent description (including
the type of building blocks and their
dimensions)

- The position of each building block. In
COMSOL a building block’s position in the
design reference system is defined by the
coordinate of a point, an axis and its
orientation (angle) in a reference system.

- Constraints and boundary conditions for
each building block.

The search algorithm creates new design
solutions in the form of CNS (geometrical
model). A translation routine transforms the
connected-node system in COMSOL object
(simulation model). The COMSOL object is
embedded in the code and the information
regarding primitives are passed to it in the
form of inputs of the file.

Figure 3b. COMSOL object (simulation model).

The translation routine consists in extracting
this information from the CNS design
description and transforming them in inputs for
the COMSOL file.
The information passed in input to the
COMSOL file are extracted from the CNS
design as follow (Figure 4):
- Name and dimensions of primitive objects

are transformed into type and dimensions of
COMSOL blocks. The translation routine
transforms information on each primitive of
the connected-node system in a COMSOL
geometry part, reading the name of the
primitive (beam, disk, etc.) and

CNS DESIGN OBJECT

 Design.Primitives

 Design.Primitives {i}. Name
 Design.Primitives {i}.Parameters
 Design.Primitives {i}.MaxInstance
 Design.Primitives {i}.MinInstance
 Design.Primitives {i}.ParamLimtis

 Design.NodeDefinitions

 Design.NodeDefinitions {ti}. Name
 Design.NodeDefinitions {ti}.Properties
 Design.NodeDefinitions {ti}. CanAdd
 Design.NodeDefinitions {ti}.CanRemove
 Design.NodeDefinitions {ti}.PropsChangeable
 Design.NodeDefinitions {ti}. PropLimits
 Design.NodeDefinitions {ti}. MinConnects
 Design.NodeDefinitions {ti}. MaxConnects

 Design.Connectivity

Design.NodeList

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

...220

............

...012

...101

Primitives

No
de

s

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

...

............

...222

...111

ynxntn

yxt
yxt

No
de

s

Type ¦ Coordinates

transforming it in the correspondent
COMSOL shape (e.g. block, cylinder, etc).

- For each primitive, the entries of the
NodeList and Connectivity matrixes are
transformed into the position of the
corresponding building block in COMSOL,
and passed in input to passed in input to the
COMSOL object file. The coordinates of
the nodes and their connectivity are
transformed in coordinates and orientation
angles for the correspondent COMSOL
block in the COMSOL design reference
system. The nodes defining a primitive are
read in the columns of the connectivity
matrix. The coordinates of these nodes are
extracted from the NodeList matrix. The
orientation of the COMSOL blocks in the
reference system is found through a
transformation matrix, using the coordinates
of the connection nodes.

Figure 4. Correspondence of features in CNS
objects and COMSOL objects.

Particular attention deserves the translation of
constraints, loads and boundary conditions for
the primitives. This is due to the fact that in
CNS representations these characteristics of
the design relate exclusively to nodes (only
nodes can be anchored, for example), while
COMSOL uses different sorts of
constraints/loads/boundary conditions for
physical parts, according to their geometry and
to designers’ needs.
Once the necessary information are passed in
input into the compiled COMSOL object, a
COMSOL meshing function is called
automatically from Matlab command line to
mesh the simulation design and analyse its

behaviour. Finally, the translation of the
geometrical model into a simulation model and
the subsequent meshing of the simulation
model are a completely automated procedure,
repeated at each design generation.

5. Application of the method: Sandwich
Microresonators

The case study used for the application of
CNS-Burst are Sandwich microresonators.
These resonators were first proposed as a new
resonator topology in 2005 and have since then
raised industry’s interest [3]. An example of
sandwich resonator is shown in Figure 5.
Sandwich resonators are called this way
because the resonant structure is sandwiched
between two electrode beams. A typical
structure is a regular one, where the
sandwiched beams are arrayed in parallel in
the vertical direction (Figure 5). The resonator
is anchored at two edges of a central beam that
runs through the length of the structure.

Figure 5. Sandwich resonator (in green: anchors; in
blue: electrodes; in red; resonant structure).

The introduction of this new type of silicon
resonator comes from the necessity to address
some technical challenges, one of which is
concerned with the value of the equivalent
motional resistance Rm. This key parameter
determines the signal to noise ratio and power
dissipation of a reference oscillator
incorporating the microresonator as a timing
element [3]. The topology of the resonator and
the coupling of mechanical and electrical
domains have a strong influence on Rm.
Sandwich resonators, compared to other
resonant structures, were seen to better meet
the requirement of minimal motional
resistance for the same operating frequency.
The sandwich structure is also advantageous
for designers that perform design calculations
by hand. The geometry is simple and the

CNS DESIGN OBJECT COMSOL OBJECT

 Design.Primitives

 Design.Primitives {i}. Name Type of COMSOL block
 Design.Primitives {i}.Parameters Dimension of COMSOL block

 Design.NodeDefinitions

 Design.NodeDefinitions {ti}. Name
 Design.NodeDefinitions {ti}.Properties
 Design.NodeDefinitions {ti}. CanAdd
 Design.NodeDefinitions {ti}.CanRemove Constraints
 Design.NodeDefinitions {ti}.PropsChangeable Boundary conditions
 Design.NodeDefinitions {ti}. PropLimits Loads

 Design.Connectivity

 Position of the block
 Design.NodeList (coordinate of one point,
 position of one axis in the
 reference system)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

...220

............

...012

...101

Primitives

N
od

es

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

...

............

...222

...111

ynxntn

yxt
yxt

N
od

es

Type ¦ Coordinates

Anchors

Electrodes

Resonant structure

H

L

gW

We Wa

behaviour of deformed beams is predictable.
The primary frequency mode of interest is the
bulk in-plane one, which involves in-phase
longitudinal extension associated with the
array beams (Figure 6). This mode can be
driven using an electrostatic parallel-plate
excitation mechanism where two electrodes are
arranged parallel to the exterior beams (shaded
blue in Figure 5). More complex geometries
for sandwich resonators would be difficult to
examine, especially because of their unknown
out-of-plane modes and complex detection of
frequency modes of interest. For this reason,
innovative structures remain largely
unexplored, although accurate and efficient,
leaving unexplored the possibility to reach
more accurate resonant frequencies. The case
study presented here is very complex even for
expert designers. The design of these devices
has been so far executed by hand analysis. The
objective of this case study is to find a
resonator with the required resonant frequency
and resonant mode. The resonant mode in
question is the sandwich-bulk mode, as the
structure vibrates in plane in the direction
traversal to the axis of the resonator (Figure 6).

Figure 6. Sandwich bulk mode shape (in colour
mode shape resonant mode).

5.1 Results of a Standard Search with Three
Design Objectives

 The goal for this case study is to generate a
structure that resonates in the desired mode
and for a desired range of frequencies. Figure
7 shows the design area A=HxL sandwiched
between the electrode beams, where new
topologies can be synthesised as an alternative
to the typical arrayed ones. The design area A
is fixed and so are its boundaries. This section
reports the optimisation model used for the
application of CNS-Burst to the sandwich
resonator topology optimisation task.

Figure 7. Sandwich resonator: the topology
optimisation task.

The design objectives considered are:
- A target operational frequency of 25 MHz

(constraint-satisfaction problem formulated
as a soft constraint)

- A minimal motional resistance Rm
(formulated as a minimisation problem). As
for the motional resistance, it has been
mentioned above that Rm is the parameter
that justifies the recent interest in sandwich
resonators. The motional resistance of
sandwich resonators can be analytically
calculated as [4]:

 (1)

where Wa and We are the width of the array
beams and the width of the additional
exterior layer (i.e. double the half distance
between axes of two consecutive beams,
Figure 5), n is the number of beam members
of the sandwich, E is the Young’s Modulus,
ρ is the material density, ε0 is the dielectric
constant, Q is the quality factor, VDC in the
operational DC voltage, T the thickness of
the structure, g the gap between resonator
and electrode.

- A maximum quality factor Q (formulated as
a minimisation problem). The quality factor
Q is a measure of the energy dissipated per
cycle in the resonator. Q can be expressed
as follows:

 (2)

where Etotal represents the total strain
energy of the entire structure (resonant parts

A ?
H

L

2

2

2
0

4

2
0

4

8

1
8

e

a

a

e

DC

eDC

sandwichm

allongitudinm

W
nW

nW
W

TQV
gE

WTQV
gE

R
R

==
−

−

ε
ρπ

ε
ρπ

anchor

total

E
EQ α=

plus anchors) for a certain mode shape and
Eanchor is the strain energy present in the
anchors for the same mode. The strain
energy in any given part of the structure is
calculated using the COMSOL-MEMS
analysis package.

The optimisation model for this design task is:

⎭
⎬
⎫

⎩
⎨
⎧
Δ

Q
Rf m

1,,min ,

S.t.
 Design Constraints for Nodes/Primitives (3)

where Δf = (f0 – f), i is the number of beams
used to form the structure, j is the number of
nodes, (xj, yj) are the coordinates of a node.
The minimum width (wi) of the beam elements
equal to 1µm is due to fabrication constraints.
The three design objectives have a complex
computational representation and have never
been defined in such details in any other work
on MEMS synthesis. Figure 8a shows a
geometrical design solutions obtained by the
synthesis method. Figure 8b shows the same
solutions transformed into COMSOL object,
used to perform behavioural analysis of the
solution found. Figure 9 presents some of the
original and innovative structures obtained
with the search.

Figure 8a. Design solution (geometrical model).

Figure 8b. Design Solution (COMSOL model).

Figure 9. Design solutions obtained with CNS-
Burst.

6. Conclusions

This work has presented a particular use of
COMSOL as a component of a CDS method.
The successful results in obtaining innovative
designs through the application of the method
are also due to the introduction of COMSOL
as part of the evaluation and simulation
module. While COMSOL accuracy allowed
precision of results, its flexibility allowed its
direct and straightforward integration in the
computational design process. This work
confirms COMSOL uniqueness as an analysis
and simulation package.

7. References

1. Bolognini, F., ‘An Integrated Simulation-

based Generative Design Method for
Microelectromechanical Systems’, PhD
Thesis, University of Cambridge (2009)

2. Cagan, J., 2005 CAGAN, J, CAMPBELL,
M.I., FINGER, S., TOMIYAMA, T.,
(2005), A Framework for Computational
Design Synthesis: Model and Applications.
Journal of Computing and Information
Science in Engineering, 5, 171-181.

3. YAN, J., SESHIA, A. A., STEENEKEN,
P. G. & VAN BEEK, J. T. M. (2006), A
Silicon MEMS Bulk Mode 'Sandwich'
Resonator. 17th European MME.
Southampton, UK.

4. YAN, J. (2007), Micro/Nano-
Electromechanical Resonators for Signal
Processing. PhD Thesis, Engineering
Department. Cambridge, University of
Cambridge.

5. LEE, J. E.-Y., YAN, J. & SESHIA, A. A.
(2008), Quality Factor Enhancement of
Bulk AcousticResonators Through Anchor
Geometry Design. Eurosensors XXII.
Dresden, Germany.

8. Acknowledgements

The author is grateful to EPSRC UK.

mymx jj µµ 1550,1610 ≤≤≤≤

	conference-button:

