

ENGINEERING GROWTH PIONEERING EXCELLENCE

Raychem RPG

Thermal Validation of Air Break Disconnector

Hamza Saiger, Ishant Jain

Raychem RPG (P) Ltd. Halol, Gujarat

Introduction

Raychem RPG

- **Disconnectors** : Off load switch
- Provide electrical & visible isolation of a system.
- Major contributor to personal safety in normal day to day operations & during maintenance.
- Types:

Pantograph

Double Break

Ratings:

- i. Medium Voltage
- ii. High Voltage
- iii. Extra High Voltage

Centre Break

33kV Double Break

Isolator Model analyzed:

Purpose & Scope

- Continuous current flow (service condition)
- Ohmic losses & eddy current losses.
- Temp Rise in the system.
- Thermal aspect important in design.
- Design according to IEC acceptance criteria.
- Reliable Design- Performance & Cost optimized end product
- Testing- Time consuming/Expensive
- Wide range of products

Problem Definition

To carry out temperature rise analysis of the disconnector as per IEC 62271-1:2017

Disconnector Model

Raychem RPG

Disconnector Model

- Multiphysics: Electromagnetic Heating
- Model: Union Model
- Solver: Frequency Stationery
- Frequency = 50Hz

Raychem RPG

Contact Modelling

- Constriction Conductance Model Gap Conductance
- Thermal Friction Electromagnetic losses
- 1. Main Contact modelling:
 - Thermal Resistive Layer for Ag coated surfaces.
 - Spring Contact Pressure of 70kPa
- 2. Bolted Connection modelling:
 - No additional coating/layer
 - Contact pressure of 80kPa for bolted connections
- Contact Resistance value.
- Surface Roughness:
 - Ag Plated 0.98µm
 - Aluminium 1.5μm

Boundary Conditions – Heat Transfer

- Hardware : Excluded for ease of computation
- Heat transfer coefficient : natural convection
- Ambient Temperature: 30° C

Horizontal cylinder (in air)

$$h = 1.32 \left(\frac{\Delta T}{D}\right)^{0.25} \text{ W/m}^{2/\circ}\text{C} \qquad [D = \text{diameter}]$$

Vertical plates and cylinders in air $h = 1.37 \left(\frac{\Delta T}{L}\right)^{0.25} \text{ W/m}^2/^{\circ}\text{C} \qquad [L = \text{plate length}]$

Part	Value	
	(W/m²K)	
Cylindrical (Rod)	4(Outer Surface)	
	3.5(Inner Surface)	
Vertical & Horizontal Flats	4	

Raychem RPG

Raychem RPG

Meshing

Results – Current Density

Surface: Current density norm (A/mm²) ▲ 6.17 3 2 1 ▼ 1.92×10⁻²⁴

Discussion

- Maximum current density is seen near the main contact (localized).
- The current density of copper and aluminum parts found to be in reasonable limits.
- Induced current density : Negligible in all 3 directions

Hence eddy current losses are negligible at 50Hz for isolator model.

Results – Temperature Profile

Raychem RPG

Part	Sim Rise °C	Exp Rise °C	Variation %	1
Fingers	47	48.3	2	
Moving Contact	47.2	48.4	2.5	
Terminal Pad	31.2	37.6	17	
Metal part in contact with insulator	8.1	7.4	-9	

Hotspots observed at main contacts.

Conclusion & Future Scope

- Simulation results are verified with test results @ ERDA, Vadodara.
- Thermal stability is analyzed and is certified with the threshold limit stated in IEC 62271-102:2017.

Verified methodology & analysis can be extrapolated to

- Identify failure points if any at design stage
- Improve product performance
- Reduce number of test iterations
- Reduce design & testing cost
- Develop reliable design.

Raychem RPC

Q&A

