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Abstract: In this paper, thermal properties of 
composites are investigated numerically and 
experimentally. In the numerical study, finite-
elements method is used to modelize heat 
transfer and to calculate the Effective Thermal 
Conductivity (ETC) of the composite for three 
elementary cells, such as simple cubic (SC), 
body centered cubic (BCC) and face centered 
cubic (FCC). The effect of the filler 
concentrations, the ratio of thermal 
conductivities of filler to matrix material and the 
Kapitza resistance of the contact inclusion/matrix 
on the effective conductivity was investigated. A 
periodical method was used to measure 
simultaneously thermal conductivity, specific 
heat and diffusivity of the composite consisting 
of epoxy resin matrix filled with brass spheres. A 
comparison between the numerically calculated 
thermal conductivities, measured and analytical 
ones for various samples is made and the 
significance of the findings will be discussed in 
the paper. 
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1. Introduction 
 
The knowledge of the effective thermal 
conductivity of composites is becoming 
increasingly important in many engineering 
application and in technological developments. 
Numerous theoretical and empirical models have 
been proposed to predict the effective thermal 
conductivity [1-4]. Numerous numerical studies 
of thermal conductivity of filled polymer were 
conducted in the past. Deissler’s [5] works were 
extended by Wakao and Kato [6] for a cubic or 
orthorhombic array of uniform spheres in 
contact. Shonnard and Whitaker [7] have 
investigated the influence of contacts on two-
dimensional models. They have developed a 
global equation with an integral method for heat 

transfer in the medium. Auriault and Ene [8] 
have investigated the influence of the interfacial 
thermal barrier on the effective conductivity and 
on the structure of the macroscopic heat transfer 
equations. Using the finite elements method, 
Veyret at al. [9] studied the heat conductive 
transfer in the periodic distribution of the filler in 
the composite materials. In their study, 
calculation was carried out on two and three-
dimensional geometric spaces. The same method 
was used by Ramani and Vaidyanathan [10] that 
have incorporated the effect of microstructural 
characteristics such as filler aspect ratio, 
interfacial thermal resistance, volume fraction, 
and filler dispersion to determine the effective 
thermal conductivity of a composite with 
spherical and parallelepipedic fillers. The 
thermal conductivity has increased from 

0.32 11. −− KmW for pure PA6 to 2.09 11. −− KmW  
for spherical copper powder filler with a 50% 
volume fraction. A numerical approach to 
calculate the ETC of granular reinforced 
composite was proposed by Cruz [11]. Many 
other contributing works were attributed to Yin 
et al. [12], Kumlutas et al. [13] and Jiang et al. 
[14]. Recently, ANSYS software was used by 
Liang [15], to perform the numerical simulation 
of the heat-transfer process in hollow-glass-bead 
(HGB)-filled polymer composites. The effects of 
the content and size of the HGB on the effective 
thermal conductivity was identified. The 
effective thermal conductivity of the 
polypropylene (PP)/HGB composites was 
estimated at temperatures varying from 25 to 30 
°C. Lattice Monte Carlo (LMC) and finite 
element analyses were used on the ETC of 
sintered metallic hollow spheres structures, 
Fiedler et al. [16]. In their work, the LMC 
calculation strategy is enhanced in order to 
incorporate temperature dependence of thermal 
conductivity and specific heat in transient 
thermal analyses [17]. In this paper, the effective 
thermal conductivity of brass spheres/resin 
epoxy is investigated numerically and 
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experimentally. The ETC was calculated using 
the COMSOL software. The obtained values are 
compared with experimental results and some 
existing theoretical and semi-empirical models. 
 
2. Prediction methods of effective thermal 
conductivity 
 
2.1. Mathematical modeling and Finite 
Element Solution. 
 

Using the finite-element software COMSOL 
3.5b, thermal analysis was carried out for the 
three-dimensional conductive heat transfer. 
About the geometry, we considered three unit 
cells corresponding to some arrangements such 
as simple cubic (SC), body centered cubic (BCC) 
and face centered cubic (FCC). The simple cubic 
body is composed of a sphere of radius r  

centered in a cubic cavity of dimensions ( )32 b×  

(Figure 1).  

 
Figure 1. Simple cubic body. 

The heat transfer in the elementary cell is 
governed by the stationary heat transfer 
equations. At the interphase the temperature 
potential jumps across the interface. The 
associated normal component of the heat flux is 
continuous and is proportional to the jump in 
temperature potential. The boundary conditions 
at the edges of the elementary cell are of 
adiabatic type except at the upper and lower 
faces where temperature is prescribed with σ  
and τ  the filler and the matrix temperatures 
respectively and cr  the thermal contact 

resistance. According to the symmetries, only 
one-sixteenth of the original simple cubic cell 
needs to be meshed (Fig. 2). The mathematical 
equations representing the heat transfer model 
are given by the equations system (1-7). 
 

Matrix :  

( ) 0=∇∇ τλm     (1) 

1ττ =  ,  bz +=  and  2ττ = , bz −=  (2) 

( ) 2/21 τττ +=  ,  0=z  (3) 

( ) cm r
n

/τστλ −=
∂
∂

, matrix ∩ sphere 
(4) 

=
∂
∂−

nm
τλ 0,   lateral faces 

Sphere  : 

(5) 

( ) 0=∇∇ σλ f  (6) 

( ) cf r
n

/στσλ −=
∂
∂−  sphere∩  matrix 

(7) 

 
Where n  is the normal unit vector pointing from 
the filler to the matrix. In order to simplify the 
problem and to decrease the computing time, 
dimensionless parameters and variables were 
used:  

rxX /= , ryY /=  and rzZ /= : the 

dimensionless space variables. 
( ) ( )2121 /2 ττττσ −−−=S : the unknown inner 

temperatures field.  
( ) ( )2121 /2 τττττ −−−=T : the unknown outer 

temperatures field. ( ) rrbB 2/22 −=  : the 

reduced resistance of the matrix layer between 
nearest spheres. fmD λλ /=  is the conductivity 

ratio between the two phases. C = rr mc /λ is the 
reduced contact resistance located at the sphere 
interface. 

meffE λλ /= : the effective thermal conductivity. 

The effective thermal conductivity E is 
calculated versus four parameters (the relative 
thermal contact resistance between particle and 
matrix C, the half distance between the particles 
divided by the sphere radius B, the filler  volume 
fraction φ  and the ratio of thermal conductivity 

between the two phases D). In order to obtain 
high accuracy for the ETC computation with 
each model (SC, BCC and FCC), the refinement 
mesh around small geometrical features and on 
the upper face ( bz = ) was considered (Fig. 2). 
In the light of a previous work [18], the effective 
thermal conductivity for each model is calculated 
versus the heat flux crossing the elementary 
cells. 
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Figure 2: Mesh of elementary cell for SC (a) and 
FCC (b) and BCC (c) models 
 
- Effective thermal conductivity of  simple cubic  model: 

 
The heat flux crossing the simple cubic 

elementary cell is defined by: 

             dXdY
dZ

dT
Q

B XY

BZ
SC ∫ ∫

+ =

+=













=

1

0 0 1

                      (8) (14) 

The effective thermal conductivity and the filler 
volume fraction of the SC model are given by: 

)1/(2 BQE SC +=  ;  3)1(6/ BSC += πφ  
- Effective thermal conductivity of  FCC model (Figure 

3): 
 

The heat flux crossing the face centered cubic 
elementary cell is defined by: 
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The effective thermal conductivity and the filler 
volume fraction of the FCC model are given by: 

)1/(2 BQE FCC +=     and     
3)1(3/2 BFCC += πφ  

(10) 

 
- Effective thermal conductivity of  BCC model : 

 
The heat flux for this case is calculated and the 
effective thermal conductivity is deduced from 
the following relation: )1/(2 BQE BCC += . The 

filler amount BCCφ  is correlated toB by: 
3)1(3/ BBCC += πφ , with :  
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2.2. Experimental study 

 
In our experimental set-up, the matrix material 

is an epoxy resin of VANTICO Company. The 
Araldite® LY5052 is mixed to 38% weight of 
Aradur® 5052. The brass spheres (70%Cu, 30% 

Zn, 3/8530 mKgbrass =ρ ) of 3.18 mm and 6.35 

mm of diameter with a thermal conductivity of 

124 11. −− KmW  were placed in aluminum mold 

cavity ( 24545 mm× ). Three samples were 
prepared under the same conditions: the first two 
are presented in figures 3 and 4. The first 
configuration is a simple cubic with brass 
spheres of 6.35 mm diameter and the second one 
is an hexagonal arrangement, with a maximum 
volume fraction with brass spheres (3.18 mm 
diameter). The third sample is a stacking of three 
layers of spheres with a 6.35 mm diameter which 
represents a face centered cubic model for its 
central part (Figure 5). 
 

        

Figure 3: Sample (a) and computed elementary cell 

       
Figure 4: Sample (b), epoxy resin / brass 
spheres of diameter 3.18mm and computed 
elementary cell 
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Figure 5: Sample (c) and the computed 
elementary cell: calculation of the effective 
thermal conductivity 
 
3. Results and discussion 
 
3.1. Numerical results- effect of filler volume 
fraction and thermal contact resistance 
 
Thermal conductivity as described in the section 
2.1, was computed by the 3D-finite element 
method, as a function of three quoted parameters 
B, C and D. Computation of about 150 E values 
has showed that a decrease in the contact 
resistance C or of the inner resistance D leads to 
a raise of the effective thermal conductivity. The 
first set of results for the simple cubic-cell is 
reported in figure 6. We observe that the lower 
and the higher limits of simple cubic thermal 
conductivity E are, respectively, 2.30 and 6.28.  
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Figure 6: ETC versus C and B, SC model 

( 510−=D ) 
 

 
Figures 7 and 8 show the variation of the ETC 
for face centered cubic (FCC) and body centered 
cubic (BCC) for different contact resistances and 
filler volume fractions φ . Similar behavior can 

be noted with the SC model. As seen from the 
figures, for low filler volume fraction %50≤φ , 

the calculated effective conductivities are nearly 
the same for both BCC and FCC models. The 
maximum effective thermal conductivity for both 
BCC and FCC models was calculated in the 
perfect interface case, i.e. no jump temperature 
across the resin/spheres interface 
( 34.6=BCCE and 97.5=FCCE  respectively).  
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Figure 7: Effect of the thermal contact resistance 
on the ETC for different filler volume fractions 

(FCC model, 510−=D ). 
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Figure 8: Effect of the thermal contact resistance 
on the ETC for different filler volume fractions 

(BCC model, 510−=D ) 
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3.2. Comparison between analytical models 
and numerical simulations 
 

To illustrate the difference between the 
numerical and analytical models, we have plotted 
in figure 9 the ETC versus the ratio of the 
thermal conductivity of filler to the one of the 
matrix material for a %52=φ  volume fraction 

and 110−=C . Note that as 310/ −≥= fmD λλ , it 

appears that both numerically and analytically 
computed thermal conductivities increase very 
slightly and tends to a constant value. Therefore, 
the use of higher conductive filler 

( 113 ..10 −− KmWf fλ ) is not interesting to 

enhance thermal composite conductivity. Thus, 
typically brass or aluminum fillers seem to be 
ideal materials from this point of view. We can 
observe that the effective conductivities of FCC 
and BCC models are fairly close to the 
Sthrikman model.  

 
The examination of these results shows that 

the difference between the Sthrikman model and 
the numericals ETC lies between 2.4% and 7.9% 
for the SC model and about 17% for the BCC 

model. On another side, for [ ]13 10,10 −−∈D , it is 
interesting to show that the difference between 
the analytical and the numerical ETC decreases 
from 5% for simple cubic model to the value of 
13% of the BCC model. The results from our 
numerical calculation and Lewis & Nielsen 
model versus filler volume fraction are shown in 

figure 10 ( 54 10,10 −− == CD ). It is found that 
the analytical0 models predicts the same 
tendency and represents a relatively good 
agreement with the numerical results and the 
effective thermal conductivity increases slightly 
from 1 to 2.29 for [ ]%30%0 −∈φ . This 
indicates that spheres are dispersed in matrix and 
they are not interacting with each other. 
However, a deviation from the numerical results 
is observed when the percentage of inclusions is 
larger %40≥φ  and a better agreement is 

achieved with %74max =φ . On the other hand, 

for filler volume fraction greater than 30%, the 
conductive filler cause an exponential increases 
in the effective thermal conductivity of the 
composite (for example from 2.29 to 6.34 for 
BCC model). 
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prediction versus the inner resistance D (C = 
0.1, φ= 52%) 
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3.3. Comparisons between simulations, 
analytical model and experimental data 
 
The thermal conductivity and diffusivity of the 
samples are measured simultaneously by using a 
so-called periodic method, using multi-harmonic 
heating signals and inverse problem [19]. The 
sample (a) is composed of a brass sphere of 
radius mmr 17.3=  centered in parallelipipedic 
epoxy matrix. Figure 3 shows the calculated 
elementary cell and the effective thermal 
conductivity is given by the following equation: 

)1(2 ,)( mSCSCa BQE += . mSCB , is the measured 

distance between the sphere and the upper 
surface divided by the sphere radius.  The second 
sample is an hexagonal arrangement, especially 
in the central part, figure 4. Hence, based on the 



computed dimensionless heat flux on the upper 
surface of the elementary cell 
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 the effective 

thermal conductivity can be re-written: 

3/)1(2 ,)( mHHb BQE += . The third sample (c) 

is a stacking of three layers. The upper and the 
lower layers represent a simple cubic elementary 
cell with 0, =mSCB and a thickness of rlsc =2/ . 

The medium layer is a face centered cubic 
elementary cell with 455.0=FCCB  and a 

thickness of rlFCC 22= (Figure 5). Hence the 

effective thermal conductivity of the sample (c) 
elementary cell is: 

( )FCCSCscFCCcFCCSCC lElElEEE += /)()(  

where SCSC QE 2= , ( )FCCFCCFCC BQE += 1/2  

and ( )122)( += rl c are the effective thermal 

conductivities for simple cubic and face centered 
cubic arrangements and the thickness of the face 
centered cubic model, respectively. In order to 
illustrate the difference between the measured 
effective conductivities, the calculated values 

from FEM simulations cE and the analytical 

predictions, we assume the perfect contact 
between the brass spheres and the epoxy matrix. 
Figure 11 shows the comparison between the 
analytical prediction, the calculated values and 
the measured data of the thermal conductivity of 
epoxy-resin/brass-spheres composite. It can be 
seen that the Nielsen values are fairly close to the 
experimental measured data of E. Relatively, the 
analytical results with %68max =φ are closer to 

the experimental measured data of mE than those 

with %68max ≠φ . The experimental values mE at 

about 20°C are compared to the calculated 
values cE from FEM simulations. The results 

show that the difference between cE  and mE  is 

lower than 2%. It is interesting to note that the 
parameter mB  plays a fundamental role on the 

heat transfer between the matrix and spheres and 
thus influences largely the value of effective 
thermal conductivity. For the samples (c), the 
parameter mB  is very low ( )0≅mB in this case 

the difference between cE  and mE is about 

1.52%. We can also observe the influence of this 
parameter on the effective thermal conductivities 
of the sample (a) and (b). It may be seen that the 
differences between cE  and mE decrease when 

mB  decreases, it means when the volume 

fraction φ  increases. Thus, it seems that the 

variation measurement-models is lower at a 
weak volume fraction. This indicates that the 
control of the parameter mB  is significant to 

measure the effective thermal conductivity and 
to understand the heat transfer behavior of the 
composites. 
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Figure 11: Calculated, measured effective 
thermal conductivities and Nielsen model versus 
filler volume fraction φ (%). The conductivity 

ratio between resin matrix and brass 
spheres: 00165.0=D . 
 
4. Conclusions 
 

Prediction of the thermal conductivity of 
composite materials is crucial in a number of 
industrial processes. All the theoretical and 
empirical models fail to predict ETC of 
composites in the whole range of filler content. 
As seen from this study, Hashin and Sthrikman 
and Lewis & Nielsen models predict fairly well 
thermal conductivity values up to 30% by 
volume of brass spheres whereas beyond 30% of 
inclusion content, all models underestimate the 
thermal conductivity of the composite. From the 
thermal conductivity measurements for three 
samples of composite at volume fraction from 
49% to 57%, it may be concluded that thermal 

conductivity has increased from 0.2 11. −− KmW  

for pure epoxy resin to 1.94 11. −− KmW . 
Furthermore, the measured values were found to 



be in good agreement with numerical data, 
especially for sample (b). The influence of the 
reduced outer resistance B of the matrix layer 
between nearest spheres on the ETC is presented 
and trends are discussed. It is shown that B plays 
a significant role in the composite heat transfer.  
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