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Abstract: A good approach for rough contours or
surfaces and their random behaviour is very important
in some engineering problems. Fractal modeling can
provide an alternative for generate rough geometries based
on statistically self-similar non-Euclidean geometries.
Through a frequency domain analysis, it is possible to
estimate the Hurst exponent of a statistically self-similar
geometry with an associated spatial frequency, and extract
the fractal dimension from it; this can represent a structure
as a set of self-contained unitary cells. Fractal analysis,
mixed with Comsol Multiphysics, will be applied in the
modeling of rough PDMS polymer surfaces for force
sensing resistors, based on AC/DC, solids mechanics
and MEMS modules. As a result, the fractal model can
generate a statistically similar rough surface to a real
surface with a given Hurst exponent. This is an important
feature for the study of contact resistance in thin film
insulating sensors.
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1. Introduction
The use of fractal geometry to model rough surfaces
results in a versatile way to representing a self-similar
structure containing a spatial cutoff frequency, based
on a fractional Brownian (fBm) motion as explained by
H. Peitgen et al., in [1]. This representation is useful
for estimating parameters such as friction or contact
resistance (for thermal and electrical models), with the
electrical contact resistance being the focus of this paper.

In particular, the approximation to represent a rough
surface is made through the Hurst exponent (H), which
describes the long-range dependence (LRD) of a spatial
series [2]. This LRD represents the randomness of a
surface, based on its trend and its spatial autocorrelation.
Fractal dimension (D) have a close relationship with H,
described by D = N − H [3], where N is the dimension
of the geometry (2 or 3), and H is defined between 0 and 1.

Depending on the frequency parameters set in the model,
the representation for a rough surface will be proportional
to a Weierstrass-Mandelbrot (WM) function [4], describ-

ing the surface as a truncated Fourier series, this implies
that the surface will have a certain spatial cutoff frequency.
Bearing in mind that fractal behavior could describe a 2D
or 3D geometry, there may be different spatial frequencies
for each axis depending on the coordinate system and the
shape of the geometry.

Undoubtedly, fractal modeling helps to evaluate the
effects of contact resistance on the conductive paths of
force sensing resistors (FSRs) [5, 6]. This phenomenon
is not insignificant in some cases and generates driffted
measures that could be predicted with an appropriate
model that includes this self-similar surface behavior.

2. COMSOL Implementation

2.1 Surface Generation

To generate a rough surface, it’s important to consider the
dimensions of the geometry; this will define whether there
is more than one spatial frequency. Once the dimension
has been selected and the spatial frequencies defined, H
is provided; it can be estimated from the geometry to
be modelled, using a rescaled range analysis (R/S). The
randomness of the surface depends on a pair of random
functions, for sweep the phase (θ) and the amplitude (A)
of the WM function.

Note that the rough surface will be a representation of
a fBm, so H will describe the covariance of a Gaussian
process, this is interpreted as: for a higher H, a smoother
surface. Therefore, to obtain a more or less roughness in
the surface, it’s necessary to sweep H between 0 and 1.

A parametric curve (2D or 3D) is defined as a surface pro-
portional to a WM function, as follows:

S 2D(x) =

M∑
m=0

a(m)−D/2Cos[2π(mx) + θ(m)] (1)

S 3D(x, y) =

L∑
l=0

M∑
m=0

a(m, l)−D/2Cos[2π(mx + ly) + θ(m, l)]

(2)
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Which has a spatial cutoff frequencies (M,L) and depends
on random Gaussian distributions A(m,l) and (m,l), to
sweep the amplitude and phase. This geometry has an
exponential decay given by the fractal dimension (D), as
follows:

Figure 1. Parametric 2D contour with N=30, H=0.6, D=1.4.

2.2 Physics

Essentially, the geometry generated is compatible
with the interactions of AC/DC, solids mechanics and
MEMS modules, adapted to model the contact resistance
phenomenon. This rough surface will be tested for a
viscoelastic polymer creep compliance. In addition, the
polymer model is doped with conductive nanoparticles;
in areas where surface roughness generates contact
between conductive plates and polymer nanoparticles, the
boundary condition of contact impedance is considered.

3. Real Geometry

the simplest way to generate a polymer model is to base
it on itself. Then, through an analysis of images from an
atomic force microscope (AFM) to a nanoparticle-doped
polymer sample, as shown in Figures 2,3.

Figure 2. AFM image of nanoparticles distribution.

Fractal dimensional modeling could generate a surface
reliable enough for the study of contact resistance, con-
sidering also a random deposition of nanoparticles.

Figure 3. 2D contour, edge highlighting

4. Results and Discussion
Thus, 2D and 3D geometries obtained are intended to be
applied in creep compliance and contact resistance tests.
Considering the rheological behavior of the polymer, the
following geometries were obtained:

4.1 2D Geometry

How it was presented in eq. (1), the two-dimensional
geometry is described by D, N, M and H. With H=0.4
and M=50, this leaves some spatial characteristics with
which the contour of the geometry will have a discrete cut-
off frequency (M=50) and will tend to decrease since the
Hurst exponent is less than 0.5. This statistically indicates
that the probability of decreasing for the WM function is
higher.

Figure 4. 2D fractal generated contour, M=50, D=1.6 and
H=0.4.

The contour obtained has the necessary properties to apply
the creep compliance and contact resistance tests, since be-
ing a contour that tends to decrease, valleys are obtained
between the contact plates and the polymer, this makes
possible a creep compliance study where the strain is not
regular in all directions, and allows the study of the phe-
nomenon of contact resistance in areas where there are
nanoparticles that touch contact plates.
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4.2 3D Geometry

Similar to the two-dimensional case, but now the aim is
to generate a tridimensional cylindrical geometry with a
highly roughened surface that matches the same consider-
ations for creep compliance and contact resistance tests.

Figure 5. 3D fractal generated surface, M=L=30, D=2.95 and
H=0.05.

As result, with H=0.05, could be seen that the surface
tends to decay and generate a large number of valleys,
suitable for the study of non-regular creep compliance and
contact resistance.

4.3 Creep Compliance Test

At a pressure of 200 [kPa] applied to a polymer sample
on the border, the expected irregular strain occurred for a
stationary study, using the solid mechanics module.

Figure 6. Creep compliance test with irregular strain.

5. Conclusions and Further Work
Using this method to generate rough surfaces with a
fractal dimension defined by a Hurst exponent, results in
contours or surfaces with the desired roughness level in
which creep compliance and contact resistance can be
studied. This process generates valleys in the geometry,
which are necessary to study the changes produced in
the conductive paths of a PDMS sample doped with
conductive nanoparticles and subjected to a certain strain.

Furthermore, an image processing edge detection filter
stage will be added to perform a previous scaled range
(R/S) analysis of the contour or surface images to be
modeled in order to select the most appropriate Hurst
exponent for represent the geometry.
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