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Abstract: In this paper, we present a math-
ematical model of contractile elastic solids
meant to simulate various districts of the car-
diovascular system, and based on the concepts
of active deformation and embedded muscle fi-
bres.

Specifically, here we deal with the mod-
elling of the gross mechanics of the left ventri-
cle (LV) which is strictly related to its pump
function. The muscle fibres embedded in the
LV walls govern, through their contraction and
relaxation, the characteristic phases of the car-
diac cycle. Moreover, muscle fibres define the
anisotropy directions of the LV wall, and the
collagene fibres determine the material proper-
ties along these directions; thus, to model the
mechanical behaviour of the LV, both the pas-
sive and the active material properties of the
must be accurately accounted for. As is well
known, the effectiveness of the pumping ac-
tion is well represented by the pressure-volume
(PV) diagrams that relate the blood pressure
to the volume of the LV during the cardiac cy-
cle. Here, we aim at reproducing realistic PV
by specifying appropriate sequence of muscle
contraction

Keywords: Biomechanics, muscle modelling,
fibre-reinforcedd materials, active contrac-
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1 Introduction

A key issue in the modelling of biological tis-
sues is the active nature of muscle fibres, in
other words, their ability to contract and re-
lax in response to biochemical signals. Such a
behaviour is commonly accounted for through
an additive decomposition of the stress into a
standard component, representing the passive
response of the tissue, typically (visco-)elastic,
and a nonstandard active component, meant

to represent the dynamical effects of muscle
contraction [1].

We favour a different modelling perspec-
tive, in which muscle contraction is accounted
for by introducing the notion of active defor-
mation: we assume that the contraction ex-
perienced by a muscle fibre under stimulus is
described at the macroscopic scale by a (stress-
free) change in the length of the fibre; the visi-
ble length of the fibre, in turn, depends on the
amount of stress it sustains. To avoid a key
misleading, it is worth saying that the notion
of “active state”–a physiologic notion for mus-
cles, coincides with that of “ground state”–a
mechanical notion for elastic bodies. Thus,
the active deformation describes how a muscu-
lar tissue shortens once activated and left free
to contract, while the visible deformation de-
scribes the state that a muscular tissue attains
once contracted, loaded and/or kinematically
constrained (as in isometric activation).

The corresponding material model is based
on a two-layer kinematics, comprising the clas-
sical vector-valued displacement field, plus a
tensor-valued field parameterizing the evolv-
ing stress-free state of muscular tissue. This
viewpoint, anticipated by the linearized 1D
model introduced in [2], was developed in [3],
[4], and [5] into a full-fledged nonlinear 3D the-
ory, along the lines set forth by the theory of
material remodelling [6], [7].

2 Muscle Modeling

Let the body B be a smooth region (with
boundary ∂B) of the three dimensional Eu-
clidean space E , and V the linear space of
translations associated to E ; a displacement
of B is described by a smooth vector field

u : B → V ; (2.1)

thus, x = X + u(X) denotes the position of
a material point X ∈ B. The visible deforma-
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tion of the body is described by the gradient
F = I + ∇u of the displacement, where is I
the identity tensor.

2.1 Fibres architecture

The architecture of the muscle fibres dictates
the activation line of the tissue, that is, the di-
rection along which muscular fibres contract.
This microstructurally relevant direction is de-
termined by the fibre axis, described by spec-
ifying a unit-vector field fo on B.

Here, we shall consider a conceptual ge-
ometry, a cylindrical pipe , representing a
coarse model of a heart ventricle; moreover,
we represent muscle fibres as helicoidal fibres.
Given an orthonormal frame {o; e1, e2, e3} for
E , and a system of Cartesian coordinates X =
o+x e1 + y e2 + z e3, we define a polar system
of coordinates

(r, θ, z) 7→ X = o+ r n(θ) + z e3 , (2.2)

with n(θ) = cos θ e1 + sin θ e2, 0 < θ < 2π.
Given a pipe with axis e3, a helicoidal fibre
of pitch b is described by a curve whose unit
tangent vector fo is given by

fo =
r

(r2 + b2)
1
2

n,θ +
b

(r2 + b2)
1
2

e3 , (2.3)

with n,θ = ∂n/∂θ; for b = 0, ∞ equation (2.3)
defines circumferential or axial fibres, respec-
tively.

b/h = 0 b/h = 0.5 b/h = 1 b/h = 2 b/h =∞

Figure 3: Different fibre windings.

b/h = 0.5 b/h = 1 b/h = 2

Figure 4: Different fibre windings.
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Figure 1: Helical fibres with different pitches,
winding along a cylindrical body of height h.

2.2 Active Response

We assume as primary the notion of contrac-
tion: it is measured macroscopically by the
variation in the rest length of the muscle fibre
through the distortion field Fo : B → Lin to
be known as the active deformation field. The
muscle fibre architecture enters the model by
assigning a specific structure to the active de-
formation field:

Fo = δ fo ⊗ fo + Ǐ , Ǐ = I− fo ⊗ fo , (2.4)

with I the identity tensor. Let us note that
the choice of a specific representation for the
active deformation tensor Fo is an impor-
tant constitutive issue; here, in the absence of
any strong physiological arguments dictating
a particular choice, we select a uniaxial tensor
sharing one eigenvector with the fibre director
fo. Thus, Fo fo is a ground state for the fibre
fo, and the component

δ = Fo fo · fo (2.5)

of the active deformation along the fibre axis
measures the contraction of that fibre. Within
our theory, the parameter δ is a link between
mechanics and electrophysiology: action po-
tential and calcium release regulate the time
course of contraction. A coupled model based
on the notion of active contractions, and ac-
counting for electromechanical effects has been
presented in [4] , [5].

The elastic deformation Fe of a fibre mea-
sures the difference between its active state
Fo fo, and the visible one F fo: it is defined
in the sense of the multiplicative composition
by1

Fe = FF−1
o . (2.6)

As usual, the elastic strain is measured
through the left Cauchy-Green tensor Ce as-
sociated with Fe:

Ce = F>eFe = F−>o CF−1
o , C = F>F .

(2.7)
Let us note that Ce measures the strain λe suf-
fered by a contracted fibre f once it has been
embedded in the actual state, (see figure 2)

f = Fo foFofo

F

F fo = Fe f

Fe = FF−1
o

Figure 1: Active contractions of a ground fiber f .
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Figure 2: The material fibre fo is mapped by the
tensor field Fo to its contracted state f ; the
elastic strain it suffers is measured by Fe.

1 It is worth noting that Fo and Fe are not, in general, gradients of any fields.



λ2
e = Fe f · Fe f = Ce · f ⊗ f . (2.8)

2.3 Passive Response

Let us introduce the isochoric part F̄e of the
elastic deformation Fe

F̄e = (Je)−1/3 Fe , Je = detFe , (2.9)

and define a strain C̄e measuring only iso-
choric deformations

C̄e = F̄>e F̄e . (2.10)

Here, we assume a passive material response
described through a transversely isotropic
strain-energy density (per unit of ground vol-
ume)

ψ : Ce 7→ ψ(Ce) = ψs(C̄e) + ψv(Je) , (2.11)

made of an isochoric contribution ψs, and a
volumetric one ψv. Following [11], the iso-
choric term is further decomposed into an
isotropic part ψiso, plus an anisotropic term
ψf , accounting for the fibres reinforcement,
and effective only for a positive fibres stretch-
ing, that is, for λe > δ:

ψs(C̄e) = ψiso(C̄e) + f(λe)ψf (C̄e) , (2.12)

with

f(λe) =
{

1, λe > δ ;
0, λe ≤ δ ; (2.13)

and

ψiso = µ
2 (I1(C̄e)− 3) ,

ψf = µ
2 [ (γ4 (I4(C̄e)− 1)2 + γ5 (I5(C̄e)− 1)2 ] .

(2.14)
The three invariants Ii of C̄e are defined as

I1(C̄e) = C̄e · I ,

I4(C̄e) = C̄e · fo ⊗ fo ,

I5(C̄e) = C̄2
e · fo ⊗ fo .

(2.15)

Finally, the volumetric component assumes
the standard form

ψv(Je) =
1
2
k(Je − 1)2 , (2.16)

with k the bulk modulus.

2.4 Stress Measures

The definition of a strain-energy density per
unit ground volume (2.11) deserves some at-
tention in the procedure delivering the consti-
tutive stress measures [6], see diagram in fig-
ure 3: the energetic stress measure So (aka,
Piola-Kirchhoff stress) is given by

So =
∂ψ

∂Fe
= 2Fe Sc , Sc =

∂ψ

∂Ce
. (2.17)

The reference stress S is the pull-back of So
through the cofactor F∗o := JoF−>o of Fo,
where Jo = det Fo:

S = SoF∗o = 2JoF (F−1
o ScF−>o ) . (2.18)

Finally, the actual stress (aka, Cauchy stress)
is the push-forward of S through F,

T = J−1SF>, J = Jo Je . (2.19)

Let us note that as a consequence of the addi-
tive splitting of the energy, we have that the
energetic stress Sc turns out to be the sum of
three terms:

Sc = Sc,iso + f(λe) Sc,f + Sc,v . (2.20)

with

Sc,iso =
∂ψiso
∂Ce

, Sc,f =
∂ψf
∂Ce

, Sc,v =
∂ψv
∂Ce

.

(2.21)
It follows that the stress T may be written as

T = Ts + k (Je − 1) I (2.22)

with

Ts = 2J−1 JoFe (Sc,iso + f(λe) Sc,f ) F>e .
(2.23)

The spherical part of T identifies a constitu-
tive prescription for the pressure:

p = −k (Je − 1) , (2.24)



Sc = ∂ψ/∂Ce

So = 2Fe Sc

Fo
S = TF∗

= So F∗o

F

T = J−1 SFT

Fe = FF−1
o

Figure 2: Stress measures.
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Figure 3: Stress measures and their relationships.

which allows to write, as usual, T = Ts − p I.
Accordingly, the reference stress S may be
written as S = Ss + Sv, with

Ss = 2 JoFe ( Sc,iso + f(λe) Sc,f ) F−>o

Sv = k (Je − 1)F∗ = −pF∗ .
(2.25)

2.5 Balance

The balance equations are formulated in inte-
gral form on the reference configuration B: for
any admissible test velocity ũ it holds∫
B

(−S · ∇ũ + f · ũ) +
∫
∂B

t · ũ = 0 , (2.26)

with f the bulk force and t the traction field
on ∂B. Standard localization arguments yield
the balance of forces in PDE form

div S + f = 0 , on B ,

Sm = t , on ∂B ,
(2.27)

with m the outward normal to ∂B.

3 Use of COMSOL Multiphysics

We implemented the whole problem from
scratch in a COMSOL script: parametric ge-
ometry, balance equations in weak form (inclu-
sive of boundary conditions), and constitutive
prescriptions. We used this code to investigate
the combined passive-active response of rein-
forced cylindrical pipes and ellipsoidal thick
shells (dummies of the left ventricle), with var-
ied fibre architectures.

We solve the balance equations (2.26) us-
ing a mixed displacement-pressure formula-
tion: assuming null bulk force, the problem is
to find a displacement field u and a pressure
field p such that∫

B
−(Ss − pF∗) · ∇ũ +

∫
∂B

t · ũ = 0

∫
B

(
p

k
+ (Je − 1)) p̃ = 0 ,

(3.28)
for all test field ũ ∈ L2

o and p̃ ∈ L1, where Li
denotes the space of piecewise polynomials of
degree i, and Lio its subspace compatible with
the kinematics boundary conditions. For the
inflation tests, the traction t represents the
pull-back of a pressure field π acting on the
inner mantle:

t = −πF∗m ; (3.29)

moreover, the volume of the inner cavity Ct
in the deformed configuration has been com-
puted as a boundary integral on ∂C using the
formula

Vol(Ct) =
1
3

∫
Ct

div (x) =
1
3

∫
∂C

(X+u)·F∗m .

(3.30)
Step function (2.13) has been implemented us-
ing a smoothed Heaviside function.

4 Results

Specific aim of the work is to investigate the
response of the left ventricle to assigned pres-
sure cycles. The response depends on some
global quantities such as the shape of the LV–
like body and the muscle fibre architecture;
our choices about these two elements have
been discussed in section 2. Other key issues
in the analysis of the LV response is due to
the characterization of the passive and active
material response of the cardiovascular tissue
comprising the LV walls which has been pre-
sented in section 2, too.

Here, we discuss the influence of these el-
ements on the mechanical performance of the
left ventricle; specifically, we aim to stress the
capacity of our distinguished notion of active
deformation in capturing some essential me-
chanical features of myocardium contraction.
Precisely, we specify appropriate pressure and
contraction cycles and aim at reproducing re-
alistic PV loops which are relevant elements
characterising heart performances [8], [9].



4.1 Traction Test

As equations (2.11)-(2.16) show, the passive
material response of the tissue is assumed to
be (locally) transversely isotropic and non ho-
mogeneous (due to the variable pitch of the
helices across the wall thickness). Actually,
the cardiovascular tissue comprising the LV
walls shows a relevant global anisotropic re-
sponse which allows to distinguish circumfer-
ential and longitudinal directions. Hence, as
first, we simulate traction tests on a model
specimen whose passive response be described
through the strain energy density (2.11)-(2.16)
and tune the material parameters so to re-
cover the anisotropic behaviour described in
[12]. Specifically, we consider an affine varia-
tion of the angle shared by the muscle fibres
and the horizontal plane through the wall, run-
ning from 60◦ (on the inner wall) to −60◦ (on
the outer wall). Then, we suppose to handle
a model specimen extracted from the cylinder
wall and perform two traction tests, along the
longitudinal (vertical) and the circumferential
direction (see figure 4). As figure (5) shows, a
suitable tuning of the shear modulus µ and the
stiffness parameters γ4 and γ5 makes it possi-
ble to capture the overall anisotropic charac-
teristics of the material related to the passive
material response of the myocardium along the
circumferential and longitudinal directions.

Circumferential

Longitudinal
Outer wall

Inner wall

Figure 4: Traction test on the model specimen;
the angle between fibres and horizontal plane

runs form −60◦ on the outer wall (epicardium)
to 60◦ on the inner wall (endocardium).

Figure 5: Traction test. The circumferential
response is roughly three times stiffer than the

longitudinal one.

4.2 Pressure–Volume loops

Here, we fix the passive material response of
the myocardium completely defined by the
equations (2.11)-(2.16) and by the material pa-
rameters listed in Table 1. As first, we re-
produce a typical PV loop by solving a se-
quence of elastic problems whose input are
pairs pressure-contraction. Pressure π ranges
from 10 mmHg to 120 mmHg and contraction
δ from 1 to about 0.7. There is a large differ-
ence between these two kind of data. Actually,
the pressure cycle may be easily measured and
it is well known how it changes in presence of
heart diseases. On the contrary, the contractil-
ity of the wall tissue is far from being well de-
fined. Usually, it is assumed that the so–called
systolic elastance represents well enough the
contractile capacity of the myocardium which
in our model is measured by the field δ. Hence,
the contraction cycles we assign here are not
derived from measures performed on patients
as the pressure cycles are. Actually, we tune
the contraction cycle in such a way that a suit-
able PV loop may be performed by our cylin-
drical model.

The results we derive are promising. Fig-
ure (6) shows that within the context of our
modeling it is possible to pick up the pressure–
volume loop in an efficient way. Moreover,
figure (8) shows the sensitivity of the model
to change in the assumptions on the angles
shared by the muscle fibres and the horizontal
plane.



Figure 6: Pressure-Volume relationship for a pipe
whose helically wound fibres have varying pitch:

the angle between fibres and horizontal plane
runs form −60◦ on the epicardium to 60◦ on the

endocardium.

Figure 7: Contraction-Volume relationship for a
pipe; helically wound fibres are as described in

previous figure.

Figure 8: Sensitivity to fibres pitch of
pressure-volume relationship for a helically

wound pipe. Label shows the range of the angle
between fibres and horizontal plane.

It is interesting to look at another typical loop

which usually is discussed in literature with
reference to the single muscle cell ([13]) (in
such a case, contraction is intended to mea-
sure the shortening of the sarcomere): the
contraction–volume loop. Figure 7 shows this
kind of cycle when tissue contraction is mea-
sured through our notion of contractility (a
macroscopic notion). Interestingly, the picture
in figure (7) resembles the cycles shown in [13]
where sarcomere shortening is represented ver-
sus left ventricular volume at any time along
a typical cardiac cycle, see figure 9.
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Figure 9: Reconstructed sarcomeres length
during a cardiac cycle for a canine heart.

Adapted from [13].

Parameter Symbol & Value
Reference volume 92 ml
Shear modulus (pipe) µ = 6e3 Pa
Fibre stiffness γ4 = 1.00
Fibre stiffness γ5 = 0.15

Table 1: Numerical values of parameters.

5 Conclusion

The present work represents a proof of con-
cept: we aimed at investigating the prospects
of the use of the notion of active contrac-
tion, and its capability in capturing some
essential mechanical features of myocardium
contraction. Future directions are multifold:
main themes are improving the geometry, es-
pecially the fibre architecture; adopting a fully
anisotropic strain energy instead of the trans-
versely anisotropic one; coupling the contrac-
tion parameter with an electro-physiological
model apt to describe the spreading of action
potential along the myocardial tissue.
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