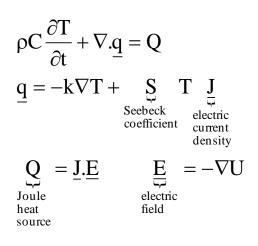


THERMAL MODELING FOR ON-INTERPOSER THERMOELECTRIC SENSORS

COMSOL Conference Rotterdam | Morel Christophe & Savelli Guillaume

- Our aim is to design micro ThermoElectric Sensors (μTES) to detect hot spots in microelectronic devices.
- Use of the Seebeck effect which produces a voltage signal when the μTES is placed in a thermal gradient.


 A μTES is made of a large number of positive Seebeck coefficient lines (p-lines) connected to the same number of negative Seebeck coefficient lines (n-lines) to form p-n junctions.

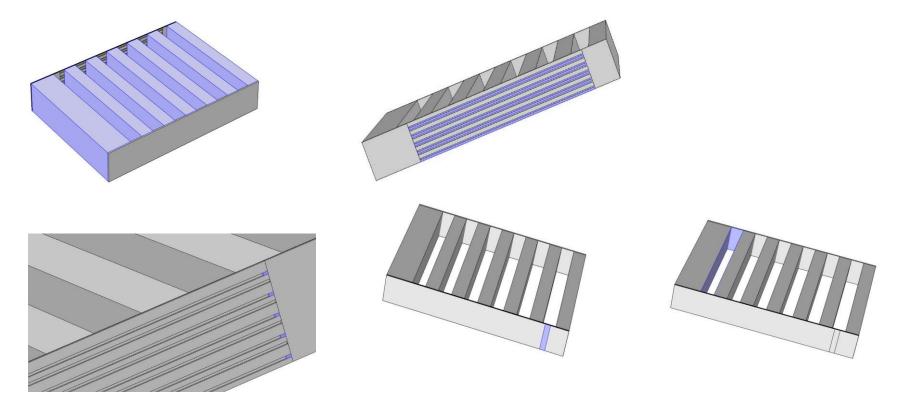
- µTES are placed in-between a thermal test chip (TTC acting as a hot source) and a Si-based wafer which may be etched (or not) to integrate micro-channels for cooling by air or water
- The goal is to attain a sensitivity Se = 100 mV/°C with a short response time (< 400 ms).

THERMOELECTRICITY GOVERNING EQUATIONS (JAEGLE, 2007)

• Equation for the temperature T:

liten Ceatech

• Electric current density (A/m₂):

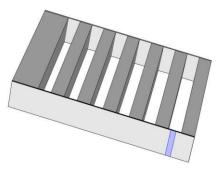

$$\underline{J} = - \underbrace{\sigma}_{\substack{\text{electrical}\\ \text{conductivity}}} \left(\nabla U + S \nabla T \right)$$

• Equation for the electric potential U (V):

$$\underbrace{\varepsilon}_{\text{permittivity}} \left[\frac{\partial^2 U}{\partial x \partial t} + \frac{\partial^2 U}{\partial y \partial t} + \frac{\partial^2 U}{\partial z \partial t} \right] = -\nabla . \underline{J}$$

Liten GEOMETRICAL MODEL OF μTES AND MICRO-CHANNELS

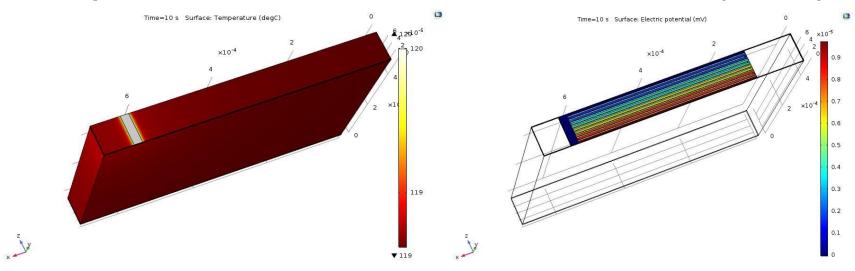
- Only 5 junctions (10 lines) of the μTES are simulated (the complete μTES has 315 junctions which is not manageable by the simulation because of small details like silicides)
- Six micro-channels are simulated when they are present.


- Two different thermoelectric materials are tested: SiGe (Silicium Germanium alloy) and QDSL (Quantum Dot SuperLattices).
- Definition of parameters used

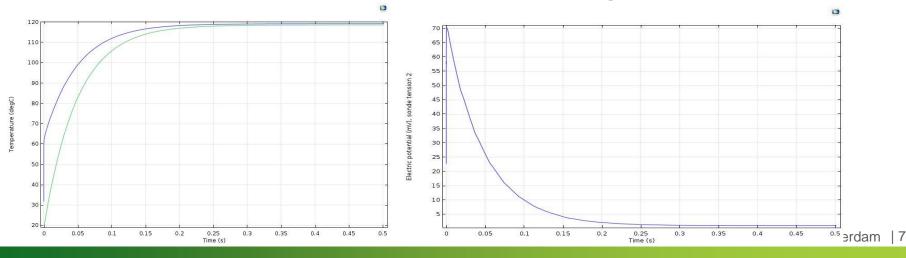
Materials	Si	Ge	QDSL		
Line type	р	n	р	n	
R = 1/σ (Ω.m)	3.10 ⁻⁵	3,4.10 ⁻⁵	1,6.10 ⁻⁴	2,5.10-4	
S (mV/K)	142	-185	253	-267	
k (W/mK)	4.7	4.1	5.3	6.3	
ρ (kg/m³)	o (kg/m³) 2330		2330	2330	
C (J/kgK)	710	710	710	710	

We investigate two types of heat transfer boundary conditions:
-> Imposed temperature = 120 °C

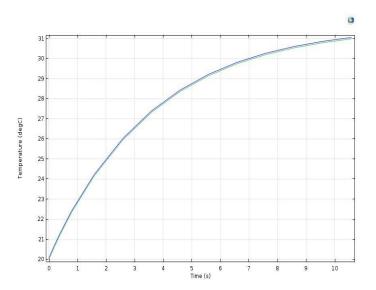
-> Imposed flux density = P/S = 99469 W/m²



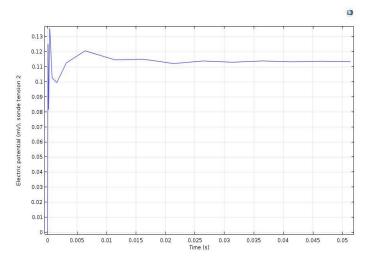
 Calculations with and without micro-channels are made in order to investigate the cooling effect.

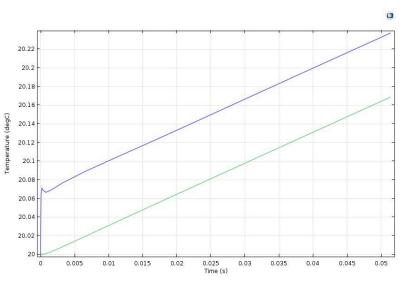

IMPOSED TEMPERATURE WITHOUT MICRO-CHANNELS SIGE MATERIAL

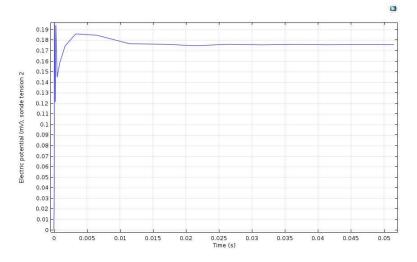
• Temperature and electric fields at the end of the calc. (t = 10 s)


liten Ceatech

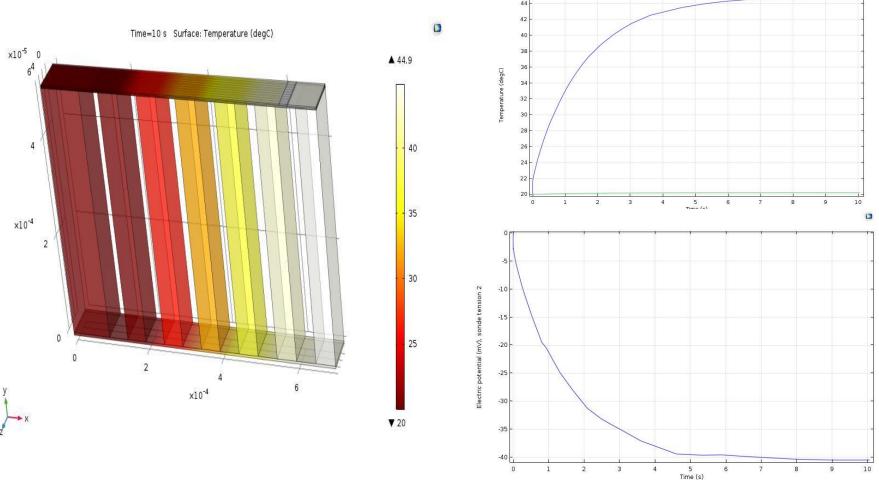
Time evolution of the hot and cold sides temperatures and the U




IMPOSED FLUX WITHOUT MICRO-CHANNELS SIGE AND QDSL MATERIALS


• Left: SiGe

liten Ceatech



Liten CERT OF THE CHANNELS SIGE AND IMPOSED HEAT FLUX

 5 micro-channels filled with air (h = 15 W/m²K) and 1 with water (h = 10000 W/m²K)

.

Liten CALCULATION OF THE SENSITIVITY IN THE DIFFERENT CASES

Materials	heat transfer boundary conditions	µchannels	Temperature difference ΔT = Th – Tc (K)	Voltage U (mV)	Time t (s)	Sensitivity Se (mV/K) 5 junctions	Sensitivity Se (mV/K) 315 junctions
SiGe	120 °C	no	43	70	0.01 s	1.63	103
QDSL	120 °C	no	43	112	0.01 s	2.6	164
SiGe	flux	no	0.072	0.12	0.001	1.66	105
QDSL	flux	no	0.072	0.19	0.001	2.64	166
SiGe	flux	yes	25	41	5	1.64	103

- SiGe: 102.6 mV/K < Se < 105 mV/K for 315 junctions
- QDSL: 164 mV/K < Se < 166 mV/K for 315 junctions
- QDSL has a better performance due to its higher Seebeck coefficient

- The μTES sensitivities Se are always greater than the 100 mV/K required
- The response time varies with the temperature field predictions: a rapid temperature variation will give a quick response time

• EUROPEAN UNION

The research leading to some of these results has been performed within the STREAMS project (<u>www.project-streams.eu</u>) and received funding from the European Union's Horizon 2020 program under Grant Agreement n° 688564

Commissariat à l'énergie atomique et aux énergies alternatives 17 rue des Martyrs | 38054 Grenoble Cedex www-liten.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019