COMSOL CONFERENCE 2017 ROTTERDAM

Copper Electrochemical Polishing Optimisation

TE-VSC L. Ferreira & A.P. Rodríguez

Outline

- Introduction to CERN
- Motivation of the work
- Electrochemical simulations
- Fluid dynamic simulations
- Summary

TE-VSC_L. Ferreira & A.Pérez COMSOL Conference 2017 Rotterdam

Introduction to CERN

CERN, is the world's largest particle physics centre and home to the Large Hadron Collider (LHC).

The mission

- Answer fundamental questions about the Universe. E.g. How did the universe begin? What is the nature of dark matter?
- Develop new technologies for accelerators and detectors.
- Bring nations together and train the scientists and engineers of tomorrow.

22 member states, just over 2500 staff members, over 12000 scientists, more than 100 nationalities.

Introduction to CERN

The research tools of CERN are the accelerators where the particles are made to collide.

Large Hadron Collider (LHC)

- World's most powerful accelerator.
- A ring of 27 km circumference.
- LHC collision energy: 14 TeV.

Future Circular Collider (FCC) study

- Develops different scenarios for high energy circular colliders for **post LHC** era.
- Ring of 80 100 Km
- FCC collision energy: 100 TeV.

Image of the Future Circular Collider

Motivation

The superconducting radiofrequency (SRF) accelerating (powered cavities are necessary to accelerate the particles.

This work should:

- Supply data in order to define the best SRF scenario for the Future Circular Collider.
- Provide the possibility to process cavities with the best technological process available (Electropolishing) to fulfil particle acceleration requirements.

Copper electropolishing (EP) installation

Motivation

Requirements of the new facility

- Compatible with 1.3 GHz to 400 MHz copper cavities.
- Enable horizontal and vertical processing.
- Uniform polishing on complex geometry.

400 MHz cavity

Definition of the working variables

Easy assessment of the parameters for the different scenarios.

Optimisation of the process

Objective

- Identify working parameters.
- Define optimum cathode geometry

Min. power input Even current density along cavity surface = uniform polishing

Electron transfer reactions of copper EP:

- Anode (cavity surface) $Cu \rightarrow Cu^{2+} + 2e^{-1}$ $2H_2O \rightarrow O_2 + 4H^+ + 4e^{-1}$
- Cathode
 - $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

Anodic polarisation curve of the copper bath (15 degrees and 100 rpm).

Model construction

- Goal: Simulate the current density distribution in the 400 MHz cavity.
- Physics module: Secondary current distribution (SCD).
- Type of study: Stationary.

- Boundary conditions:
 - Cathode surface: φs, ext. = 0 V.
 - Anode surface: ϕ s, ext. = Ecell.
 - Electrodes kinetics defined using polarisation curves.

Results

Output electrochemical simulations:

	Min. working potential [V]
Starting Cathode	65
Cathode 'a'	18
Cathode 'b'	8

Results

Next step: Fluid Dynamic simulations

Objective

• Improvement of the cathode shape in terms of homogeneous electrolyte velocity distribution near the cavity wall.

Model construction

- Goal: Simulation of the electrolyte velocity distribution in the 400 MHz cavity.
- Physics module: Laminar flow combined with wall distance interface.
 - Type of study: Stationary.
 - Boundary conditions:
 - Inlet: Set with a laminar inflow of 50 lpm.
 - Outlet: Set with pressure.
 - Cavity walls: Non slip condition.
 - Gravity: Included with volume force node.

Fluid Dynamic simulations

Results

Cathode geometries defined:

Output from the FD simulations:

Electrolyte vertexity distribution [m[/s])/sith20 theodera a' freehold cover provide ly.

Fluid Dynamic simulations

Objective

• Quantify the impact of fluid dynamics on the etching rate.

Model construction

Fluid Dynamic simulations

Summary

Main results achieved:

- Definition of an optimised cathode geometry.
 - Resulting in a minimum working potential, total current and power input;
 - Improved uniformity of the current density distribution.
- Quantification of the impact of flow dynamics on the EP reaction rate evenness and its application to improve the cathode geometry.

□ This work defined a modelling/simulating tool that can now promptly assess different SRF FCC cavity geometries.

COMSOL CONFERENCE 2017 ROTTERDAM