Time-Resolved Optical Tomography in Preclinical Studies: Propagation of Excitation and Fluorescence Photons.

F. Nouizi¹, R. Chabrier¹, M. Torregrossa², P. Poulet¹

¹Laboratoire d'Imagerie et de Neurosciences Cognitives,

²Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection

4 rue Kirschleger, 67085 Strasbourg Cedex, France.

Introduction

- WHY DOING OPTICAL IMAGING ?
 - New contrast: optical properties of tissues
 - Functional information (perfusion, oxygenation)
 - Fluorescent probes
 - Localization and activation of fluorochromes
- HOW DOING OPTICAL IMAGING ? (3D, volume, in vivo)
 - Pulsed light sources and time resolved detection
 - Reconstruction methods taking into account the diffuse photons
- SIMULATED AND EXPERIMENTAL RESULTS
 - Phantoms
 - Small animals

The challenge of optical imaging

X – ray photons are transmitted with low scattering: image reconstruction is easy.

Red and near-infrared photons are transmitted by tissues. They are highly scattered: image reconstruction is difficult.

Absorption and scattering

Expression:

L_a: propagation length before absorption

 $\mu_a = 1/L_a$: absorption coefficient (cm⁻¹)

L_s: propagation length between 2 scattering events

 $\mu_s = 1/L_s$: scattering coefficient (cm-1)

 θ : mean scattering angle, $g = \cos(\theta)$

 μ 's = (1-g). μ s : reduced scattering coefficient

 $1/\mu$'s = L's : propagation length before forgetting the initial direction of the photon

Diffusion and absorption properties of tissues

Main absorbers:

- UV: proteins, DNA
- Vis.: hemoglobin, melanir
- NIR: water, lipids

- cells, nuclei, mitochondria, fibers, membranes ...

$$600 < \lambda < 1000 \text{ nm}$$

$$100 < \mu_s < 1000 \text{ cm}^{-1} \quad 0.8 < g < 1$$

$$0.1 < \mu_a < 1 \text{ cm}^{-1}$$
 Diffusion regime

Optical imaging of small animals

Principles of usual methods

Use of highly sensitive CCD camera: imaging of the light at the surface (skin) of the animals.

Limitations

Detection of visible light: small depth of analysis.

The volume sensed by irradiation photons and the true localization of light sources (in volume) remains unknown

Solution

Near infrared photons

Tomographic approach

Diffuse propagation of photons

Time resolved detection

From Xenogen Corp.

Time resolved diffuse optical tomography

General process of data acquisition and image reconstruction

Time-resolved DOT system

Time-resolved DOT system

Crosstalk

Instrumentation on a mobile optical table top

Main characteristics

Impulse response function (FWHM) ~ 260 ps

Mean incident power < 1 mW

Sensitivity max count rate 10⁵ cps

dark count rate ~ 0.6 cps

Temporal stability (meantime) < 5 ps

Temporal stability (intensity) 2%

< 1%

DOT of solid phantoms

Reconstruction using a 2D simulation of TPSF first moments

3D Modelisation of whole TPSF

Radiative Transfer Equation

>> Diffusion Approximation

 $\triangleright \mu'_s >> \mu_a$ Numerous scattering events before detection

Photon Density $\Phi(r,t)$

Diffusion Equation:
$$\frac{\partial \Phi}{\partial t} - \nabla \kappa \nabla \Phi + \mu_a c \Phi = -q(t, r_0)$$

 q_0 : Isotropic source at $1/\mu'_s$ $\kappa = c/3(\mu_a + \mu'_s)$: difffusion coefficient

• Fluorescence:
$$\frac{\partial \Phi_2}{\partial t} - \nabla \kappa \nabla \Phi_2 + \mu_a c \Phi_2 = -\frac{\eta c}{\tau} (\Phi \otimes e^{-t/\tau})$$

- η : fluorophore concentration, τ : fluorescence lifetime
 - **Boundary Conditions (Robin conditions)**
 - Measurements: Exitance = $\Phi(r_d, r_s, t)/2A$

Excitation and fluorescence photons propagation

Fluorescence photons 0 - 2 ns

Excitation and fluorescence photons propagation

Mouse model with fluorescent volume

Irradiation from an optical fibre

Excitation photons 500 ps post pulse

Fluorescence photons 500 ps post pulse

Excitation and fluorescence photons propagation

Excitation and Fluorescence photons 0 – 1 ns

Temporal profiles of excitation and fluorescence photons

Excitation (left) and fluorescence (right) photons detected at 180° (green), - 120° (blue) and + 120° (red) from the illumination fiber.

Conclusion

- Time resolved optical tomography:
 - Absorption, scattering and fluorescence images
- Preclinical applications under progress:
 - Instrumentation for MRI +TODF coregistration
 - Image reconstruction: inverse problem
 - whole temporal profiles of excitation and fluorescence photons
 - a priori information from MRI

Application perspectives

Clinical imaging

Mammography

Neurology: epilepsy, brain activation (oximetry)

Muscular pathology: myopathies

Preclinical imaging
CNS deseases
Cancer therapy

MRI + TOD Coregistration

Technological Plateform MRI + TOD

Sprag-Dawley rat. T₁ MRI: 16h after MnCl₂ 0.8mmole/kg