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Abstract: Bloch waves in infinite periodic struc-

tures can be conveniently studied by COMSOL. 

This is demonstrated by a simple, yet rich two-

dimensional example: a perforated sheet with 

square symmetry. The frequencies of Bloch 

waves are obtained from the solutions of eigen-

value problems with prescribed wave vector. 

Varying the wave vector results in dispersion 

relations which form the band structure. The 

characteristic features of such (propagating or 

standing) Bloch waves can be examined with the 

COMSOL plotting and animation tools. In addi-

tion, evaluation and visualization of kinetic and 

potential energy densities as well as of the struc-

ture-borne sound intensity vector help to analyze 

energy aspects of wave propagation. At low fre-

quencies analytical solutions are available for 

comparison; homogenization leads to an aniso-

tropic effective medium. Thanks to two theorems 

related to the energy of elastic Bloch waves, the 

numerical accuracy of some averages over the 

unit cell may be checked. 

Keywords: Perforated sheet, Bloch waves, band 

structure, structure-borne energy density, struc-
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1. Introduction

Almost thirty years ago the author began to theo-

retically investigate periodic components in 

building acoustics, e.g. masonry walls. The gen-

eral consideration of energy aspects of structure-

borne sound eventually resulted in the mono-

graph [1]. (It is written in German; unfortunately, 

there is no English translation, however, a 

French online version [2] is available.) The chap-

ter on periodic structures contains general formu-

lations including formulas for energy densities 

and intensities of Bloch waves. A low-frequency 

approximation, which leads to an analytic solu-

tion for arbitrary one-dimensional periodic struc-

tures, is exemplified with the two-dimensional 

structure shown in Fig. 1. Despite its simple ap-

pearance the richness of the results is substantial 

and quite instructive. 

Figure 1. 2D periodic structure “Perforated Sheet”. 

Meanwhile, COMSOL has become a conven-

ient tool for handling infinite periodic structures. 

After definition of the unit cell of the periodic 

structure the COMSOL model is completed with 

few mouse clicks. Of course, the scope of results 

which can be calculated and visualized by COM-

SOL is much larger than shown in [1], since the 

COMSOL model is not restricted to low fre-

quencies. 

However, generating results and understand-

ing them are different matters. Knowledge of the 

underlying theory of Bloch waves in elastic 

structures greatly helps with interpretation. The 

following section 2 recollects some of the men-

tioned “old” results, which are then contrasted 

with COMSOL results in section 3. The combi-

nation of numerical tools with a profound theo-

retical knowledge favors correct conclusions and 

successful applications (section 4).  

2. Review of Analytical Results

2.1 Two Theorems 

Two theorems related to the energy density and 

the intensity of Bloch waves [1, 3] can be useful 

for the analysis of energy and energy transport 

aspects.  

(i) Rayleigh's principle for progressive

waves (see e.g. [4]) states that under certain con-

ditions the averages of kinetic and potential en-

ergy densities of progressive waves are equal. 

For Bloch waves the energy densities ekin and epot

have to be averaged both over time t (over a 

Excerpt from the Proceedings of the 2016 COMSOL Conference in Munich



 

 

period T) and over space r
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 (over a unit cell uc) 

in order to arrive at the equality 
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(ii) The group velocity is equal to the ener-

gy velocity deduced from averages over the 

unit cell. The group velocity C
�

 is equal to the 

gradient of the (circular) frequency ω  with re-

spect to the wave vector k
�
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while the energy velocity ec
�

 is defined as the 

ratio of the intensity (which is the time average 

of the energy flux density) and the time average 

of the total energy density. For a Bloch wave 

with Bloch wave vector k
�

 the two velocities are 

equal, if the energy velocity is defined with aver-

ages over the unit cell: 
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NB: The phase velocity in the direction of k
�

 is 

obtained by 

 c
k

ω
= �

. (4) 

 

2.2 Low-Frequency Approximation 

 

With the assumption that at low frequencies the 

phase velocity c does not depend on the frequen-

cy (but still depends on Bloch-wave type and 

usually also on propagation direction), an analyt-

ic approximation was worked out [1], which 

leads to an infinite system of linear equations. 

Explicit expressions for the averages in (3) were 

also obtained. With the aid of Rayleigh’s princi-

ple for Bloch waves (1) an analytical solution 

was derived for general one-dimensional period-

ic structures. Numerical evaluations for the two-

dimensional structure of Fig. 1 included defor-

mations, energy densities and intensities for 

some propagation directions. Figs. 2 to 5 show 

graphs from the short report [5] published before 

the book [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Low-Frequency Approximation 

 

hjfkhvkvkhv [1], [5] 

 

 

Figure 2. Intensities (arrows) and time-averaged ener-

gy densities (circles) for the mainly transversally po-

larized Bloch wave with wave vector k
�

 at low fre-

quencies. Inner circles: kinetic, outer circles: total 

energy density. The radii of the circles are proportion-

al to the energy density. 

 

 

 

Figure 3. As Fig. 2, but for the mainly longitudinally 

polarized Bloch wave. 

 

Looking at the circles in Fig. 3 it is clear that 

the (time averages of the) kinetic and potential 

energy densities can be quite different locally: 

Left and right from the hole there is little poten-

tial energy. In order to satisfy Rayleigh’s princi-

ple (1), this is compensated by an excess of po-

tential energy above and below the hole. 
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Figure 4. Intensities (arrows) for the mainly transver-

sally polarized Bloch wave with wave vector k
�

 at 

22.5° relative to the horizontal unit-cell edge at low 

frequencies. In the hole the direction of the unit-cell-

averaged intensity is shown. 

 

 

 

Figure 5. As Fig. 4, but for the mainly longitudinally 

polarized Bloch wave. 

 

 

Figs. 4 and 5 show the energy flow in more 

detail and moreover illustrate that in case of 

propagation in non-symmetry directions the in-

tensity averaged over a unit-cell is not parallel to 

the propagation direction, a characteristic feature 

of homogeneous, but anisotropic media. 

2.3 Homogenization 

 

At low frequencies the Bloch waves resemble 

plane waves. The periodic medium “behaves” 

like a homogeneous medium, however with di-

rection-dependent properties. The “effective” 

moduli of such an “equivalent” anisotropic me-

dium can be obtained from the (frequency-

independent) phase velocities (4) along several 

propagation directions. In the present example 

with square symmetry the determination of the 

three effective moduli is rather simple. The gen-

eral relation between phase velocities and effec-

tive moduli (up to 21) was given by Norris [6].  

Once the effective moduli are known, the pe-

riodic medium can – as for the calculations – be 

replaced by the equivalent homogeneous aniso-

tropic medium, which is much simpler to deal 

with: Computation of polarization, slowness sur-

face, group velocity, energy densities and inten-

sity are comparatively easy. 

 

3. COMSOL Results 
 

3.1 Model Setup 

 

How COMSOL can be used for infinite periodic 

structures was communicated recently by Elab-

basi [7]. The essential feature is “Floquet Perio-

dicity”, which is found among the boundary 

conditions (“Connections” >> “Periodic Condi-

tion” >> “Type of periodicity”). In the present 

example (Fig. 6) two such “Connections” are 

required, one for the x-direction and one for the 

y-direction. Visualization of results over more 

than one unit cell is achieved by the “Data Set” 

“Array 2D”. Here one should not miss to check 

the box “Floquet periodicity” under “Advanced” 

and enter the correct wave vector components. 

(Caution! The coordinates “X:” and “Y:” are plot 

coordinates, which are not necessarily identical 

to the global model coordinates. If – e.g. in case 

of 2D periodicity and a 3D unit cell – an “Array 

2D” is generated in a “Cut Plane”, it may happen 

that after “X:” the wave vector component ky has 

to be entered!) 

As to the term “Floquet periodicity”: The 

displacement field of a propagating Bloch wave 

is not periodic in the strict mathematical sense of 

the word. It therefore appears unfortunate to call 

a non-periodic quantity periodic. “Floquet-Bloch 

Condition” would be more appropriate. 
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Figure 6. Unit cell of the 2D periodic structure  

with "physics-controlled, normal" mesh. Outer edge: 

3 cm; inner edge: 1 cm. Material properties: Young’s 

modulus: 10 MPa; Poisson’s ratio: 1/6; mass density: 

1500 kg/m³. 

 

With reference to masonry walls mentioned 

in the introduction the current COMSOL version 

5.2 does not support the modeling of infinite 

periodic structures without rectangular (ortho-

tropic) symmetry. Brickwork with “oblique” 

periodicity like in Fig. 7 is excluded, unless the 

offset (“lap”) between rows (“courses”) of bricks 

is one half of the longer side of a brick and noth-

ing else breaks the rectangular symmetry. In that 

case, however, the smallest unit cell is two bricks 

large. (Similarly, a hexagonal structure with rec-

tangular symmetry can be modeled by a rectan-

gular lattice with rectangular unit cell, the size of 

which comprises two basic hexagons.) 

 

 

Figure 7. Non-orthogonal lattice corresponding to the 

masonry type “raking stretcher bond” (in German: 

”Schleppender Läuferverband”). 

The “Study” type needed for the determina-

tion of Bloch waves is “Eigenfrequency”. This 

term is rather reserved for vibrations of finite 

structures. In the infinite case with waves, how-

ever, one is faced as well with – infinitely many 

– eigenvalue problems. The Bloch waves are so 

to speak the modes of infinite periodic structures. 

Yet in contrast to eigenvibrations, a wave pos-

sesses an identifier additional to frequency: the 

wave vector. As a consequence one has to speci-

fy the wave vector, i.e. propagation direction and 

wavelength, for the definition of the eigenvalue 

problem. 

In order to obtain an overview of the proper-

ties of the Bloch-wave “families” of a particular 

periodic structure, the wave-vector space is sam-

pled along a few selected directions by means of 

a “Parametric Sweep”. If desired, the sweeping 

parameter (called “p” in the present example) 

can be cleverly defined as to cover several direc-

tions in one run [7].  

 

3.2 Band Structure 

 

The band structure contains information on 

Bloch-wave dispersion, i.e. the dependence of 

the frequency on the wave vector. Fig. 8 shows 

results for the x-direction up to p = 0.5, which 

means up to  

 

 xk
L

π
= , (5) 

 

where the first Brillouin zone ends (L: edge 

length of unit cell). Since the band structure is 

periodic in wave-vector space, it is sufficient to 

investigate the first Brillouin zone [8]. 
The two lines starting at p = 0 and zero fre-

quency are called “acoustic branches”. They 

correspond to transversal and longitudinal plane 

waves in the homogeneous sheet (i.e. without 

holes). All other – infinitely many – branches are 

called “optical” [8]. There is a “band gap” (or 

“stop band”) around 1.4 kHz: In this frequency 

region Bloch waves propagating along the x-

direction do not exist. 

At about p = 0.42 it looks as if the green 

branch and the red one “want” to cross. This is in 

fact the case, but since COMSOL does not care 

about branch crossing, the line and color assign-

ment fails. 
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Figure 8. Band structure for wave vectors along  

the x-direction. 

With Eq. (4) the phase velocity of a Bloch 

wave can be easily extracted from the band 

structure, while determination of the group ve-

locity via the gradient according to (3) demands 

more effort. However, for symmetry directions, 

here e.g. the x-direction, this task simplifies to 

quantify the slope of the dispersion curve. Nega-

tive slopes in the red and blue branch lines in 

Fig. 8 imply negative group velocities, i.e. phase 

and energy travel in opposite directions. 

 

3.3 Bloch-Wave Visualization 

 

COMSOL provides convenient and powerful 

tools for visualization and analysis of Bloch 

waves. Animations are particularly helpful for 

detailed studies of motions and deformations. 

Figs. 9 to 11 show snapshots of Bloch waves 

(color encodes “solid.disp”). 

Fig. 9 clearly demonstrates that the dis-

placement associated with a Bloch wave is not 

sinusoidal. Bloch waves can be considered as 

plane waves modulated by a perturbation with 

the periodicity of the structure. For the acoustic 

branches this deviation from a plane wave be-

comes weaker with decreasing wavenumber.  

At the edge of the first Brillouin zone at 

p = 0.5 the slopes of the branches in Fig. 8 be-

come zero. This implies zero group velocity and 

thus standing waves (Fig. 11). Here the periods 

of the unperturbed plane wave and the structure 

become commensurable and the Bloch wave is 

periodic. 

 
Figure 9. Bloch wave of shear type  

(blue branch at p = 0.35 and 491 Hz). 

 

 
Figure 10. Bloch wave of longitudinal type  

(green branch at p = 0.35 and 866 Hz). 

 

 
Figure 11. Standing Bloch wave of shear type  

(blue branch at p = 0.5 and 609 Hz). 

 

3.4 Energy Densities and Intensity 

 

Acoustic phenomena are not completely under-

stood if energy aspects are ignored. This is par-

ticularly true for structure-borne sound in inho-

mogeneous media. Therefore it is worthwhile to 

look at energy densities and energy transport. 
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Figs. 12 to 15 illustrate such quantities for 

the light-blue optical Bloch wave at p = 0.1 and 

1619 Hz. Whereas the kinetic energy density 

distribution is rather smooth at small scales, the 

potential counterpart (strain energy) is highly 

concentrated at the corners of the hole. 

Fig. 15 shows with streamlines and arrows 

how the energy flows around the hole. Two fea-

tures are conspicuous: (i) there are intensity vor-

tices and (ii) the net energy flow is from the right 

to the left, i.e. opposite to the wave-vector direc-

tion. Comparisons with graphs based on the low-

frequency approximation turned out satisfactory 

(see Figs. 5 and 16 as example). 

 

 

 

 
Figure 12. Time average of kinetic energy density 

(light-blue branch at p = 0.1 and 1619 Hz). 

 

 

 
Figure 13. As Fig. 12, but for potential energy. 

 

 
Figure 14. As Fig. 12, but for total energy. 

 

 

 
Figure 15. Structure-borne sound intensity  

 (light-blue branch at p = 0.1 and 1619 Hz). 

 

 

 
Figure 16. Structure-borne sound intensity for oblique 

propagation along 22.5° (for comparison with Fig. 5). 
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4. Applications 
 

Metamaterials [9-10] with periodic microstruc-

tures are currently much in vogue. Thus, there 

are many opportunities for Bloch-wave studies 

with COMSOL. Although real structures are 

always finite, the infinite theoretical model is of 

great help for analysis and optimization. Since 

only one unit cell has to be dealt with, the nu-

merical effort is relatively small. If homogeniza-

tion is appropriate, it can drastically simplify the 

model of the finite structure. Other applications 

may concern quite practical objects like sports-

hall floors with periodically distributed resilient 

supports. 

Further, the Bloch-wave concept can also be 

applied to the sound transmission problem of an 

infinite 2D-periodic partition between two ho-

mogeneous fluid half-spaces, since parallel to the 

partition the half-spaces trivially possess the 

same periodicity. With the additional items 

“Background Pressure Field” and “Perfectly 

Matched Layer” for the infinite extension per-

pendicular to the partition a COMSOL model for 

this transmission problem is readily obtained. 

 

5. Conclusion 
 

COMSOL is a valuable and powerful tool for 

investigating periodic structures in a wide range 

of frequencies. Former analytic low-frequency 

approximations are easily reproduced numerical-

ly. Detailed consideration of the energy aspect 

might open new perspectives, also and especially 

for metamaterial research. Two pertinent theo-

rems are helpful both for understanding acoustic 

phenomena and for simplifying and checking 

numerical calculations.  
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