

COMSOL CONFERENCE 2016 MUNICH

TEHL Simulation of Gear Contacts

Thomas Lohner, Andreas Ziegltrum, Karsten Stahl

COMSOL Conference 2016 12-14 October 2016 Munich, Germany

- Introduction
- Problem Description
- Model Implementation
- Exemplarily Results
- Conclusion

Introduction

- TEHL contact: Back-coupling of hydrodynamic and deformation in lubricated contacts (Bartel 2009)
- Frequently occurring in drive technology and thus in gear drives
- Significant influence on friction and damage behavior of gears

Very small scales in space and time in TEHL contacts require numerical simulation to capture the tribological processes of gears in detail

Using Multiphysics is necessary to simulate TEHL contacts

Study focusses on the implementation of a TEHL simulation model for gear contacts

- Introduction
- Problem Description
- Model Implementation
- Exemplarily Results
- Conclusion

Problem Description

Gear Parameter

Gear type	FZG type Cmod
Centre distance a in mm	91.5
Number of teeth $z_1: z_2$	16:24
Normal module m_n in mm	4.5
Pressure angle α in °	20
Face width b in mm	14
Tip relief C_{a1} , C_{a2} in μm	35

Operating Condition

Pinion Torque T_1 in Nm	183
Pinion bulk temperature $\vartheta_{M,1}$ in °C	90
Pitch line velocity v_t in m/s	8.3

Lubricant Parameter

Lubricant type	MIN100
v (40°C) in mm ² /s	95.0
$v(100^{\circ}C)$ in mm^2/s	10.0
$\rho_f(15^\circ C)$ in kg/m^3	885

Ziegltrum, Lohner, Stahl; 43rd Leeds-Lyon Symposium on Tribology, Leeds, UK (2016)

TEHL Simulation of Gear Contacts

13.10.2016

Problem Description

Dependency on Temperature, Pressure and Shear Rate

13.10.2016

TEHL Simulation of Gear Contacts

- Introduction
- Problem Description
- Model Implementation
- Exemplarily Results
- Conclusion

Model Implementation

- Transient TEHL contact along the path of contact of gears can be interpreted as sequential instantaneous contacts of two rolling elements
- In TEHL simulations, this contact is usually further simplified to an equivalent contact between a single (inelastic) roller and an elastic flat body

Model Implementation

FEM-based TEHL simulation model with non-Newtonian fluid behavior

Hydrodynamics (Ω_P):

$$\frac{\partial}{\partial x} \left[\frac{\partial p}{\partial x} \int_0^h \rho \left(\int_0^z \frac{\tilde{z}}{\eta} d\tilde{z} - \int_0^z \frac{1}{\eta} d\tilde{z} \frac{\int_0^h \frac{z}{\eta} dz}{\int_0^h \frac{1}{\eta} dz} \right) dz \right] \\ + \frac{\partial}{\partial x} \left[\frac{v_2 - v_1}{\int_0^h \frac{1}{\eta} dz} \int_0^h \rho \left(\int_0^z \frac{1}{\eta} d\tilde{z} \right) dz + \int_0^h \rho dz \cdot v_1 \right] + \frac{\partial}{\partial t} \int_0^h \rho dz = 0$$

• Contact mechanics (Ω_{δ}) :

$$h = h_0 + \frac{x^2}{2R_x} + \delta - \Re$$
 with $\int_{\Omega} p \, d\Omega = F_N / l_{eff}$

• Energy conservation $(\Omega_T, \Omega_{T,1}, \Omega_{T,2})$:

$$\rho c_p \left(\frac{\partial \vartheta}{\partial t} + u \frac{\partial \vartheta}{\partial x} \right) - \left[\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial \vartheta}{\partial x} \right) + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial \vartheta}{\partial z} \right) \right] = -\frac{\vartheta}{\rho} \frac{\partial \rho}{\partial \vartheta} \left(\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} \right) + \eta \left(\frac{\partial u}{\partial z} \right)^2$$

 $\rho_{1,2}c_{p,1,2}\left(\frac{\partial\vartheta}{\partial t}+\nu_{1,2}\frac{\partial\vartheta}{\partial x}\right)-\left[\left(\lambda_{1,2}\frac{\partial^2\vartheta}{\partial x^2}\right)+\left(\lambda_{1,2}\frac{\partial^2\vartheta}{\partial z^2}\right)\right]=0$

Lohner, Ziegltrum, Stemplinger, Stahl; doi: 10.1155/2016/6507203 (2016)

FEM-model(P, H)

FEM-model(\overline{T})

i Heat Transfer in Fluids

Lohner, Ziegltrum, Stemplinger, Stahl; doi: 10.1155/2016/6507203 (2016)

671-01-46

A. Ziegltrum 10

Model Implementation

13.10.2016

TEHL Simulation of Gear Contacts

A. Ziegltrum 11

- Introduction
- Problem Description
- Model Implementation
- Exemplarily Results
- Conclusion

Exemplarily Results

Ziegltrum, Lohner, Stahl; 43rd Leeds-Lyon Symposium on Tribology, Leeds, UK (2016)

13.10.2016

TEHL Simulation of Gear Contacts

A. Ziegltrum 13

Exemplarily Results

671-01-46

TEHL Simulation of Gear Contacts

- Introduction
- Problem Description
- Model Implementation
- Exemplarily Results
- Conclusion

Conclusion

- Simulation model for transient TEHL contacts considering non-Newtonian fluid behavior and thermal contact conditions has been developed
- Numerical procedure is based on a direct FEM-based full-system approach and iteratively coupled to the thermal problem
- Simulation model has been implemented in COMSOL Multiphysics and applied to the transient TEHL contact along the path of contact of spur gears
- Further modelling will be focused on rough gear surfaces and mixed lubrication regime