Fluid Coupling Effects of an Array of Oscillators

Arun Kumar Manickavasagam
PhD Student
University of Canterbury

Motivation for the project

- ➤ High speed non-contact AFM (atomic force microscopy/-e) is used to track the motion of live-cells
- Spatial resolution for AFM imaging of a whole mammalian cell is only about 50 nm.
- ➤ Why do we want to study coupling dynamics of AFM arrays in fluids?

Figure 1: SEM image of PRONANO array

Model setup using COMSOL

Figure 2: Meshed model of two cantilever cross-sections "far from the wall" in a fluid domain

Name	Expression	Value	Description
а	920[um]	9.2E-4 m	side length of fluid domain
z1	-460[um]	-4.6E-4 m	Height of the beam from surface
b	92[um]	9.2E-5 m	width of the beam
d	6[um]	6E-6 m	thickness of the beam
k	222.12[N/m]	222.12 N/m	equivalent spring stiffness
freq	63[kHz]	63000 Hz	drive frequency
F	1e-3[N]	0.001 N	force amplitude
g1	1/2*b	4.6E-5 m	gap width between beams

Table 1: Parameter list

Work flow

Two beam analysis, only one beam excited

- Varying gap widths g = b, 0.6b, 0.5b and 0.4b
- Both "far from the wall" and "close to the wall"

Two beam analysis, both beams excited

- Both beams excited in-phase for gap width g = 0.4b
- Both beams excited out-of-phase for gap width g = 0.4b
- Both "close to a flat wall" and "close to a stepped/profiled wall"

Three beam analysis, only one beam excited

- Only one beam excited at a time for gap width g = 0.4b
- "close to a flat wall"

Two beams: Only one beam excited, far from the wall study

Figure 3: Displacement of two beams, gap width = b

Figure 5: Displacement of two beams, gap width = 0.5b

Figure 4: Displacement of two beams, gap width = 0.6b

Figure 6: Displacement of two beams, gap width = 0.4b

Time history plots, gap width g = 0.4b

Far from the wall

Figure 7: Displacement of two beams far from the wall, g =0.4b

Figure 9: Steady-state plot far from the wall, g = 0.4b

Close to a flat wall

Figure 8: Displacement of two beams close to a flat wall, g = 0.4b

Figure 10: Steady-state plot close to a flat wall, g = 0.4b

Flow and pressure plots, g = 0.4b

Far from the wall

Figure 11: Flow and stress plot far from the wall

Figure 13: Pressure contour far from the wall

Close to the wall

Figure 12: Flow and stress plot close to the wall Time=0.0063492 s Contour: Pressure (Pa) ▲ 8.92 120 8.31 7.71 100 7.1 6.49 80 5.89 4.67 4.07 3.46 2.86 2.25 20 0.43 -0.17 -0.78 -1.39 -1.99

Figure 14: Pressure contour close to the wall

Two beams excited close to the wall

In-phase excitation

Figure 15: Displacement of two beams excited in-phase, g =0.4b

Figure 17: Steady-state plot of two beams excited in-phase, g =0.4b

Out-of-phase excitation

Figure 16: Displacement of two beams excited out-of-phase, g =0.4b

Figure 18: Steady-state plot of two beams excited out-of-phase, g =0.4b

Flow and stress plots, g = 0.4b

In-phase excitation

Figure 19: Flow and stress plot of beams excited in-phase, g =0.4b

Figure 21: Pressure contour of beams excited in-phase, g =0.4b

Out-of-phase excitation

Figure 20: Flow and stress plot of beams excited out-of-phase, g =0.4b

Figure 22: Pressure contour of beams excited out-of-phase, g =0.4b

Three beams: Effect of neighbouring beams

Beam 1 excited

Figure 23: Displacement of three beams, g = 0.4b

Figure 25: Steady-state plot of three beams, g = 0.4b

Beam 2 excited

Figure 24: Displacement of three beams, g =0.4b

Figure 26: Steady-state plot of three beams, g = 0.4b

Three beams: Flow and pressure plots, g = 0.4b

Beam 1 excited

Figure 27: Flow and stress plot of three beams, g = 0.4b

Figure 29: Pressure contour of three beams, g = 0.4b

Beam 2 excited

Figure 28: Flow and stress plot of three beams, g = 0.4b

Figure 30: Pressure contour of three beams, g = 0.4b

Two beams: Both beams excited in unison 2015 KUALA LUMPUR

Flat wall

Figure 31: Displacement of two beams, g = 0.4b

Figure 33: Steady-state plot of two beams, g = 0.4b

Stepped wall

Figure 32: Displacement of two beams, g = 0.4b

Figure 34: Steady-state plot of two beams, g = 0.4b

Two beams: flow and pressure plots

Flat wall

Figure 35: Flow and stress plot of two beams, g = 0.4b

Figure 37: Flow and stress plot of two beams, g = 0.4b

Stepped wall

Figure 36: Flow and stress plot of two beams, g = 0.4b

Figure 38: Flow and stress plot of two beams, g = 0.4b

Summary

- Varying gap width study: Strong coupling occurs as the gap width decrease between the beams.
- Varying height study: Reduced amplitude of the beam compared to the "far away from the wall" case
- Varying excitation conditions:
- Only one beam excited: beams vibrate in a out-of-phase fashion Both beams excited: results in a higher amplitude when excited out-of-phase.
- Effect of non-neighbouring beams: hardly have any influence on the dynamics of the system when coupled only via fluid
- Varying wall configurations: results in a phase shift when excited in close proximity to a stepped wall whereas beams vibrate completely inphase when vibrating close to a flat wall.