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Abstract: In this work, we present two models 

of single phase flow in porous media with fractal 

properties which were implemented using 

COMSOL Multiphysics® to simulate, analyze 

and interpret pressure tests in naturally fractured 

reservoirs. The models were derived using a 

systematic fractional continuum mechanics 
approach for isotropic and anisotropic fractal 

media, respectively.  

 

One of the advantages of derived 

mathematical models is that they are represented 

in terms of conventional differential equations. 

Numerical experiments showed a consistent 

behavior with the expected anomalous behavior, 

where the pressure drops at a faster or slower 

rate compared to conventional flow model. 

 

Keywords: single phase fluid flow, porous 
media, fractal continuum mechanics. 

 

1. Introduction 
 

The primary motivation of this work was to 

develop mathematical and numerical models for 

fluid flow in porous media with fractal 

properties, because it has been observed that the 

pressure from well tests of certain naturally 
fractured reservoirs in México exhibit an 

abnormal behavior which departs from the 

expected when traditional flow models with 

Euclidean geometry are applied. 

 

Some authors like (Camacho-Velázquez et. 

al. 2006), (Barker 1988), (Chang and Yortsos 

1990), among many others, believe that the 

reason for this anomalous behavior can be 

explained assuming that the porous medium has 

fractal properties due to the complex distribution 
of fractures. They have developed some fractal 

flow models; however the derivation of such 

models was not very rigorous because they only 

made some modifications to the conventional 

flow model to take into account some fractal 

characteristics of the medium.  

Recently, (Tarasov 2005) and (Ostoja-

Starzewski, et. al. 2011 and 2013) have 

introduced fractional measures for isotropic and 

anisotropic fractal media, respectively, which 

allowed for a systematic derivation of fractal 

flow models using a fractional continuum 

mechanics approach. 
 

The theory of fractional continuum 

mechanics can be interpreted as a generalization 

of the usual theory of continuum mechanics but 

introducing fractional measures instead of a 

Lebesgue measure. 

 

In this work, two models for single phase 

flow in porous media with fractal properties were 

derived to evaluate their performance 

numerically. 

 
One of the most important aspects to note is 

that all models were developed following a 

systematic methodological approach which 

consists of four stages. The first step is defining 

a conceptual model where the assumptions, the 

scope and limitations of the model are 

established. In the second stage the mathematical 

model is derived, consisting on a partial 

differential equation with initial and boundary 

conditions that satisfy the assumptions of the 

conceptual model. While in the third stage is 
chosen the numerical model which is always a 

discretized version of the mathematical model. In 

this case a finite element method was applied. 

Finally, in the fourth stage the computational 

model, which is the implementation of the 

numerical method on a computer platform. 

 

One of the advantages of the resulting 

mathematical models of anomalous flow 

obtained in this work is that they are represented 

in terms of conventional differential equations in 
which their coefficients are functions of the 

fractal (mass and boundary) dimensions, i. e., 

fractional differential equations can be expressed 

as equations with integer derivatives, which has 
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a great advantage for their numerical solution 

and especially for its computational 

implementation. 

 

Numerical simulations were carried out for 

each one of the two models, for different values 
of fractal dimensions in a case study in a square 

domain in two dimensions.  

 

Numerical results showed consistency with 

the expected anomalous behavior, where the 

pressure drops at a faster or slower rate 

compared to the conventional flow model. 

 

2. Conceptual Model 

 

The following assumptions are usually 

adopted for models of fluid flow through porous 
media (Chen et al. 2006): 

 

- There are two phases: a fluid phase and a solid 

phase. 

- There are only two components: the fluid phase 

consists of one fluid component and the solid 

phase is made of the rock, which usually is 

called the porous matrix. 

- The porous medium is fully saturated with the 

fluid.  

- The solid matrix remains at rest throughout the 
fluid-flow process. 

- The rock and fluid are slightly compressible. 

This means that the fluid density and the rock 

porosity can be approximated as linear functions 

of the pressure. 

- The fluid velocity fulfills Darcy’s law.  

- The fluid is not subjected to diffusion 

processes. 

- The fluid viscosity is constant. 

- The system is under isothermal conditions. 

 

Additionally, it is assumed that the porous 
medium has fractal properties, and that could be 

isotropic or anisotropic. 

 

The flow system is a two-phase system since 

it consists of the solid matrix and the fluid 

contained in its pores. However, the fact that the 

motion of the solid phase is known, since it 

remains still, permits dealing with the fluid phase 

exclusively and treating the system as a single-

phase system. This single phase, in turn, is made 

of only one component, the fluid. Thus, the 
family of extensive properties consists of only 

one extensive property, namely, the fluid mass. 

 

 

3. Mathematical Model 

 

 The governing equations for the single phase 

flow of a fluid (a single component or a 

homogeneous mixture) in a porous medium are 

given by a mass balance equation, a momentum 
conservation equation (Darcy’s law) and an 

equation of state. We make the assumptions that 

the mass fluxes due to dispersion and diffusion 

are so small (relative to the advective mass flux) 

that they are negligible and that the fluid-solid 

interface is a material surface with respect to the 

fluid mass so that no mass of this fluid can cross 

it. Denote by   the porosity of the porous 

medium, by   the fluid mass density per 

volume unit and by u  the Darcy velocity. 

 

3.1. Isotropic Fractal Model 

 

Applying the theory of isotropic fractional 

continuum mechanics (Tarasov 2005), we define 

the extensive property as the fluid mass in a 

fractal homogeneous medium D
M  and the 

intensive property as the product of density   

and the porosity   in the fractal media. 

( )

( , ) ( , )

B t

D D
M x t x t d                  (1)            

Where  
2 2

2

2

( / 2)

D D

D

r
d d

D
 

 


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              (2)            

is a fractional measure introduced by Tarasov 

(Tarasov 2005) for isotropic fractal media, 2
d  

is the Lebesgue measure in 
2

, 0r x x   

where 0 ( )x B t  is the initial point of the 

fractional integral in the Rietz form, and   is 
the Gamma function. Due to there is 

conservation of fluid mass, the global balance 

equation of fluid mass in isotropic fractal porous 

media can be expressed as follows 

( ) 0D

d
M t

dx
                                 (3)                                            

and the local balance fractional differential 

equation is given by 

 ( ) 0
D

v
t
 


 


               (4)                                            

Now, the fluid velocity in the porous media 

is defined as u v  then 
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 ( ) 0
D

u
t
 


  


              (5)                                            

Considering the rock and the fluid slightly 

compressible (Chen et al. 2006), the time 

derivative term can be expressed as 

( ) t

p
c

t t
 

 


 
                           (6)                                            

where p   is the pressure and R ftc c c   is the 

total compressibility, whereas R
c  and f

c  are the 

rock and fluid compressibility, respectively. The 

Darcy law for isotropic fractal media (Linares 

and Díaz-Viera 2014) can be expressed as: 

 
1 D D

u k p z


                    (7)                                            

Where   is the fluid viscosity, k  is the 

permeability tensor of porous media, p  is the 

fluid pressure,   is the fluid density,   is the 

gravitational acceleration and z  is the high. 

  

Here the fractional gradient operator is defined 

as 
1

2 1
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Note that the Darcy law for isotropic fractal 

media Eq. (7) was derived based on the work of 

(Neumann 1977) and using the fractional 

measure Eq. (2) introduced by Tarasov. 

 

Substituting Eqs. (7) and (6) in Eq. (5), and 

ignoring the gravity effect, a single phase flow 

model for isotropic fractal porous media is 

obtained:  

D D

t

p
c k p

t







   



 
 
 

          (12)                                            

If the change of density is neglected then the 

fractional differential equation (12) can be 

expressed as: 

1
0

D D

t

p
c k p

t





   



 
 
 

          (13)                                            

 

3.2. Anisotropic Fractal Model 

 

In the same form, applying the fractional 

continuum mechanics theory to anisotropic 

media (Ostoja-Starzewski, et. al. 2011, 2013), 

we define the extensive property as the mass 

fluid of the homogeneous fractal media, as D
M , 

as:  

( )

( , ) ( , )
D D

B t

M x t x t d          (14)                                         

Where  

1 1 2 2
( ) ( )

D
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 
         (15)                                         

while the length measurement along each 

coordinate is given by the transform coefficients:  
( )

1
( ) ( , )

k

k k k k kdl cx x dx


        (16)                                         

with 1 2
D    , and  

( )

1

1 1, 2,  
( )

kk

k

k

c k
x







 


 (no sum). (17)                                         

Again, considering fluid mass conservation  

( ) 0
D

d
t

dx
M                               (18)                                            

Then, the local balance differential equation is  

 ( ) 0v
t
 


  


               (19)                                            

Applying the fluid velocity in the porous media 

u v  then we have 

 ( ) 0u
t
 


  


               (20)                                            

Considering density a linear approximations of 

the pressure, as in the equation (21) results 

( ) t

p
c

t t
 

 


 
                        (22)                                            

The Darcy law for anisotropic fractal media 

(Linares and Díaz-Viera 2014) is expressed as: 

 
1 D

u k p z


                    (23)                                            

Here the fractional gradient operator is defined 

as 

(1) (2)

1 1 1 2

1 1
,

D f f
f

c x c x

 


 


 
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The rest of the notations have the same 

meaning as in equation (7). Substituting the 

equations (22) and (25) in equation (20) and 

neglecting the gravity effect and the change of 

density, we have a single phase model of 

anisotropic fractal flow: 

1 D

t

p
c k p

t





   



 
 
 

              (26)                                            

 

3.3. Initial and Boundary Conditions 

 

Initial conditions: 

 0 0p t p                          (27) 

Boundary conditions: 

No-flow conditions at all boundaries. 

0u n                         (28) 

 

4. Numerical and Computational Models 

 

For the numerical solution we apply the 

following methods: 

 

- A backward finite difference discretization of 

second order for the temporal derivatives was 

used resulting a full implicit scheme in time. 
- A standard finite element discretization with 

quadratic Lagrange polynomials as weighting 

and base functions.  

- An unstructured mesh with triangular elements 

in 2D. 

- A variant of the LU direct method for non-

symmetric and sparse matrices, implemented in 

the UMFPACK library, for the solution of the 

resulting algebraic system of equations. 

 

 
Figure 1. Square domain with triangular element 

mesh. 

 

The computational implementation was 

carried out for a rectangular domain in two 
dimensions (see Figure 1) using the COMSOL 

Multiphysics software by the PDE mode in 

general coefficient form for the time-dependent 

analysis (COMSOL Multiphysics 2007). 

 

4.1. Isotropic Model 

 

Considering the equation (13) for a two 
dimensional region, we develop the fractional 

divergence in 
2

and multiply both sides by 

2 ( , )c D r  to obtain the following differential 

equation with a conventional divergence 

1
2 1 1

2

( , )

( , )

1
( , ) ( ( , ) ) 0

t

D r

p
c D r c

t

c c d r k c d r p






 
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 





  

  (29)                                            

Now, developing the gradient results 

2

2

( , )

1 1
( 1) 0

t

p
c D r c

t

k p k d r xp



 
 

 
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 




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      (30)                                            

where 
1 2

2 1
: ( , ) ( , )c D r c d r


 . 

Using the template of COMSOL PDE mode for 

time dependent analysis in the coefficient form: 

 

2

2a a

p p
e d

t t

c p p p ap f  

 


 

       

      (31)                                            

where: 

2( , ) tad c D r c ;   1
c k




;   21
( 1)k d r x 




   

with 0 0( ),x x x y y    

while 0
a

e a f      .  

 

4.2. Anisotropic Model 

 

Considering the equation (26) in COMSOL 

notation (PDE, Coefficient Form) Eq. (31), 

where:   0ae a f               while, 

a td c ,    and   
1

c k


 . 

The permeability tensor can be defined as: 

11
(1)

1

22
(2)

1

0

0

k
c

k
k

c

 
 

  
 
 
 

                    (32)                                           

For boundary conditions in both models is 

used a generalized form of the Neumann 

boundary condition implemented in COMSOL 

which are expressed in the next form: 
( )n c p p qp g             (33)                                            

where 0q g     . 
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5. Numerical Simulations 
 

Basically, numerical simulations consist in 

solving the flow models derived in section 3 for 
a case study defined in a square domain with a 

production well at the center for different 

combinations of fractal dimensions using data 

taken from (Chen et al. 2006), see Table 1. 

 
Table 1: Data for the case study. 

 

Symbol Description (value) 

0p  Initial pressure (3600 psi) 

  Oil viscosity (1.06 cP) 

k  Permeability (0.3 Darcy) 

0x  x-coordinate of the well (1234.44 m) 

0y
 

y-coordinate of the well (1234.44 m) 

f
c  

Oil compressibility (0.00001 1/psi) 

R
c  

Rock compressibility (0.000004 1/psi) 

tc   
Total compressibility (0.000014 1/psi) 

  Porosity (0.2) 

0
Q  Oil production rate (300 STB/D) 

 

6. Discussion of Results 

 
 In Figure 2, it can be observed that the 

pressure in the well drops faster at the beginning 

but quickly stabilizes in a constant value with the 

increasing of the fractal boundary dimension for 

a fixed value of mass fractal dimension ( 2D  ). 

Note that the conventional model ( 2D  and 

1d  ) is in red color. While in Figure 3, it is 

seen that the pressure behavior tends to be more 

linear as we move away from the well with the 

increasing of the fractal boundary dimension. 
 

Figure 4 shows that with the decrease of the 

mass fractal dimension ( D ) for a fixed fractal 

boundary value ( 1d  ) in the isotropic fractal 

model the behavior of the pressure drop in the 

well at the beginning is slower but later is faster 

becoming almost linear, which is very different 

in comparison with the conventional model 

( 2D   and 1d  ) in red color. 

 
Figure 2 Pressure drop in the well during 3.5 days, 

for the isotropic fractal model with 2D  and 

different values of the boundary dimension ( d ). 

 

 
Figure 3 Pressure profile along a section for the 

isotropic fractal model with 2D   and different 

values of the fractal boundary dimension ( d ). 

 
 

 
Figure 4 Pressure drop in the well during 3.5 days for 

the isotropic fractal model with 1d   and different 

values of mass fractal dimension ( D ). 
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Figure 5 Pressure profile along a section for the 

isotropic fractal model with 1d   and different 

values of mass fractal dimension ( D ). 

 

While in Figure 5, it is seen that the pressure 

behavior tends to be lower but quickly stabilizes 

in a constant value as we move away from the 
well with the decreasing of the mass fractal 

dimension. 

 
 

 
Figure 6  Pressure in the well during 4 days, with 

1
1 

 
and different values of 2

 for the anisotropic 

fractal model. 

 

In the anisotropic model (Figures 6 and 7), 

the behavior of the pressure drop in the well is 

similar but slower as the mass fractal dimension 

1 2
D     increases in comparison with the 

conventional flow model.  This can be 

interpreted as the connectivity of the medium 

decreases as the value of the mass fractal 
dimension increases.  

 

The behavior of the pressure around the well 

is symmetric if the medium is isotropic 
1 2   

(see Figure 8) and asymmetric if the fractal 

medium is anisotropic 
1 2   (see Figure 9) 

when the anisotropic fractal model is applied. 

 
 

 
Figure 7 Pressure in the well during 4 days, with 

1
0.6 

 
and different values of 2

  for the anisotropic 

fractal model. 

 

 
Figure 8 Pressure in 4 days for the anisotropic fractal 

model with 1
0.6 

 
and 2

0.6  . 

 

 
Figure 9 Pressure in 4 days for the anisotropic fractal 

model with 1
0.75 

 
and 2

0.6  . 
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7. Conclusions 
 

Applying a fractional continuum mechanics 

approach two single phase flow models in 
porous media with fractal properties were 

derived. The first one was developed for 

isotropic fractal media using a fractional measure 

introduced by (Tarasov 2005). Whereas the 

second model was obtained applying a fractional 

measure introduced by (Ostoja-Starzewski, et. al. 

2011 and 2013) for anisotropic media. Both 

models required unconventional Darcy laws for 

fractal media that were derived from the balance 

equation of linear momentum using the 

aforementioned fractional measures following 
the same approach given in (Neumann 1977).  

 

The numerical experiments showed a 

behavior consistent with the question of 

anomalous diffusion, where the pressure drops 

with faster or slower rate compared to the 

conventional flow model. 

 

One of the advantages of the mathematical 

models of abnormal flow obtained in the present 

work is that they are conventional differential 

equations with additional numerical coefficients, 
i.e., fractional differential equations can be 

expressed in terms of integer derivatives, the 

latter being a great advantage for their numerical 

solution and computational implementation.  

 

The solutions of fractal flow models are 

reduced to the solution of the conventional 

model if the corresponding integer dimensions 

( 2D   and 1d   or 
1 21   ) are taken. 

 

Comparing the isotropic model with respect 

to the anisotropic model it can be seen that the 

first one in general depends on three parameters 

( D , d , 0x ), but strongly depends in particular 

on the choice of the point location ( 0x ) which is 

usually placed in the same position of the source 

term, while the second model only depends on 

the fractal dimensions in each direction (
1 2,  ). 

Moreover, the anisotropic model despite of being 

more general doesn't reduce to the first one. 

Therefore, both models constitute two 

alternatives for modeling flow in fractal porous 
media. 

 

As future work, the developed methodology 

can be extended to multiphase flow and 

multicomponent transport models in porous 

media with fractal properties, with great potential 

for application in heterogeneous reservoirs 

modeling. 
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