

Modeling the Effect of Headspace Steam on Microwave Heating Performance of Mashed Potato

J. Chen, K. Pitchai, D. Jones, J. Subbiah

University of Nebraska – Lincoln

October 9th, 2014 Session : Electromagnetic Heating

Microwave Heating Convenient but Non-uniform

Microwave Heating Models

Computer model use science based approach for :

- product formulation
- design product layout
- design package
- develop cooking instructions

Novel Food Product Development

Café steamer

Objectives

- Develop a comprehensive multiphysics model that includes:
 - Electromagnetic heating
 - Heat and mass transfer
 - Phase change of water evaporation
 - Laminar flow and heat transfer in headspace
- Evaluate the headspace steam on microwave heating performance

Model Development

Problem Description in Food Sample

J. Chen, K. Pitchai, S. Birla, M. Negahban, D. Jones, J. Subbiah. 2014. Heat and mass transport during microwave heating of mashed potato in domestic oven – model development, validation, and sensitivity analysis. *Journal of Food Science*. DOI: 10.1111/1750-3841.12636.⁷

Problem Description in Headspace

Geometric Model

Assumptions

- Frequency 2.45 GHz
- Moisture condensation in headspace was ignored.
- The radiation from the hot steam to the food product was ignored.
- EM field and heat source was calculated using room temperature dielectric properties.

Electromagnetics – Maxwell's Equations

$$\nabla \times \mu_{\rm r}^{-1} (\nabla \times \mathbf{E}) - \left(\frac{2\pi f}{c}\right)^2 (\varepsilon_{\rm r} - i\varepsilon'')\mathbf{E} = 0$$

$$Q = \pi f \varepsilon_0 \varepsilon'' \mathbf{E}^2$$

f Microwave frequency
 c Speed of light
 ε_r Dielectric constant
 ε Dielectric loss factor
 μ_r Permeability
 Q Power dissipation density

Phase Change (Water Vaporization / Condensation)

$$I = \frac{K \cdot M_{W} \cdot (P_{V,eq} - P_{V})}{R \cdot T}$$

Evaporation rate constant
Vapor pressure
Equilibrium water vapor pressure
ldeal gas constant
Temperature
Molecular weight of vapor/water

Momentum Conservation – Darcy's Law

$$\mathbf{u_i} = -\frac{k_{in,i} \cdot k_{r,i}}{\mu_i} \nabla P$$

u _i	Darcy's velocity,
k _{in,i}	Intrinsic permeability
k _{r,i}	Relative permeability
μ_i	Dynamic viscosity
Р	Total pressure

Mass Conservation

Food sample

Energy Conservation

$$(\rho C_p)_{eff} \frac{\partial T}{\partial t} + \rho C_p \mathbf{u} \cdot \nabla T = \nabla \cdot (k_{eff} \nabla T) - \lambda I + Q$$

$$egin{array}{c} \rho \\ C_p \\ u \\ (
ho C_p)_{ef} \\ k_{eff} \\ \lambda \\ I \\ Q \end{array}$$

fluid density
fluid heat capacity
fluid velocity field
effective heat capacity
effective thermal conductivity
latent heat of evaporation
evaporation rate
heat source

Laminar flow of vapor

Navier-Stokes Equation

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} &= \nabla \cdot [-\rho \mathbf{I} \\ + \mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathsf{T}} \right) - \frac{2}{3} \mu (\nabla \cdot \mathbf{u}) \mathbf{I}] + \mathsf{F} \end{aligned}$$

p Pressure µ Viscosity

Heat transfer of fluid

$$\rho C_{p} \frac{\partial T}{\partial t} + \rho C_{p} \mathbf{u} \cdot \nabla T = \nabla \cdot (k \nabla T)$$

ρ Fluid density
 C_p Fluid heat capacity
 u Fluid velocity field
 K Thermal conductivity
 T Temperature

Meshing

• Tetrahedral and prime elements

Simulation Strategy

Results and Discussion

Velocity in Headspace Animation

Spatial Temperature on Top Surface

• The headspace steam increased the temperature on the top surface

▼ 30.5

∎ 15 ▼ 14.9

▼ 51.6

Total Moisture Evaporation

• The headspace steam increased the total moisture evaporation

Heating Nonuniformity

 The headspace steam increased the heating uniformity on the top surface by 8%, but not for the whole food product.

Conclusions

- A comprehensive model of microwave heating coupled with heat and mass transfer in food product and headspace was developed.
- The headspace steam increased the temperature on the top surface and the total moisture evaporation.
- The headspace steam increased the heating uniformity on the top surface by 8%, but not for the whole food product.
- The model needs to be further refined and validated before it can be used by the food industry to assist food development.

Thank you very much !

Jiajia Chen chenjj0422@huskers.unl.edu