

Cryogenic Heat Sink for Helium Gas Cooled Superconducting Power Devices

Presentation at the COMSOL Conference 2012 Boston, 3 – 5 October 2012

L. Graber¹, D. Shah¹, D.G. Crook¹, C.H. Kim¹, N.G. Suttell¹, J. Ordonez¹, S. Pamidi¹ ¹Center for Advanced Power Systems, Florida State University

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Introduction

- Superconducting power cables cooled by helium gas
- Challenges in cable termination
- Application of the heat sink
- Finite element model
 - 2D heat transfer
 - 3D fluid flow
- Experiment for model validation
- Conclusions

- Superconducting cables for shipboard power system
 - Temperatures below LN2 \rightarrow higher current density
 - Liquid cryogens not permitted (asphyxiation & explosion hazard)
 - Solution: Helium gas at 50...60 K and 1.8 MPa; flow rate up to 20 g/s
- gHe has lower heat capacity than LN2
 - Cooling more challenging, especially at terminations

Model Heat Sink

Problem:

- Heat influx from ambient
- Joule heating in bushing
- Solution:
 - Heat intercept attached to copper conductor
 - Cold He gas flow through heat sink
- Design:
 - Finned heat sink inside tube
 - Entirely made from copper
 - Design and dimensions need to be optimized by FEA
 - Small-scale model built for model validation

CONFERENCE Finite Element Model: 2D Heat Transfer

Goal: Determine optimal number of fins **Symmetry**: All BC for ½ heat sink

Physics

- Heat Transfer in Solids
- No CFD, but

Boundary conditions

- Heat influx 50 W
- Symmetry
- Insulation (vacuum)
- In channels: Convective cooling boundary condition (h = 90 W/m²K for the 9-fin model, obtained by Dittus-Boelter correlation)
- Initial temperature: 50 K
- Material properties
 - Copper: k, c_p, ρ as a function of temperature
- Mesh size: normal (2986 elements for 9-fin model)
- Pressure drop calulated separately using Moody Diagram

- Maximum heat sink temperature and pressure drop as a function of number of fins for three different mass flow rates
- 9 Fins seem to be optimal
- Flow rates of below 1 g/s are sufficient (50 W input power)

Finite Element Model: 3D Fluid Flow

COMSOL

FERENCE

Made from copper

COMSOL

ERENCE

- Most parts mechanically machined
- Fins were machined by EDM
- Joined by silver braze (optimal heat transfer; leak free)
- Heater based on resistance wire
- Wrapped in aluminized Mylar
- Installed in vacuum chamber

	50 W for full HS		100 W for full HS	
Parameter	Model	Experiment	Model	Experiment
Temperature inlet [K]	58.6	58.6	65.5	65.5
Temperature increase [K]	4.15	4.7	6.45	7.3
Temp. heat sink [K]	63.0	77.3	73.8	84.0
Pressure drop [Pa]	284	294	313	297

- Generally good agreement between simulation results and measurements
 - Except for heat sink temperature
 - Investigations under way to determine the reason for discrepancy (Model or measurement?)

- The chosen geometry is suitable
 - Low pressure drop
 - Excellent heat transfer
 - Higher flow rates for turbulent flow are under investigation
- The developed models are very useful tools for heat sink design and optimization
 - It will be used for a real application in near future
- Model will be extended to incorporate turbulent flow
- Optimization studies for geometrical parameters (non-uniform spacing of fins; thickness of fins)