案例集锦

COMSOL Multiphysics 案例库模型来自广泛的应用领域,包括电气、机械、流体和化工等行业。您可以下载现成即可使用的模型,以及详细的建模步骤说明,作为您建模工作的起点。请使用“快速搜索”查找与您的专业领域相关的模型,并登录或创建一个与有效的 COMSOL 许可证相关联的 COMSOL Access 帐户,下载模型文件。

P-N Junction Benchmark Model

This simple benchmark model computes the potential and carrier concentrations for a one-dimensional p-n junction using both the finite element and finite volume methods. The results are compared with an equivalent device from the book, "Semiconductor Devices: A Simulation Approach," by Kramer and Hitchon.

DC Characteristics of a MOS Transistor (MOSFET)

This model calculates the DC characteristics of a simple MOSFET. The drain current versus gate voltage characteristics are first computed in order to determine the threshold voltage for the device. Then the drain current vs drain voltage characteristics are computed for several gate voltages. The linear and saturation regions for the device can be identified from these plots.

P-N Junction Diode with External Circuit

This model extracts spice parameters for a silicon p-n junction diode. The spice parameters are used to create a lumped-element equivalent circuit model of a half-wave rectifier that is compared to a full device level simulation. In this example, a device model is made by connecting a 2D meshed p-n junction diode to a circuit containing a sinusoidal source, a resistor and a ground to form a basic ...

Heterojunction Benchmark

This one-dimensional model simulates three different heterojunction configurations under forward and reverse bias. The model shows the difference in using the continuous quasi-Fermi levels model as opposed to the thermionic emission model to determine the current transfer occurring between the different materials creating the junction under bias. The energy levels obtained with the model are then ...

Bipolar Transistor

This model shows how to set up a simple Bipolar Transistor model. The output current-voltage characteristics in the common-emitter configuration are computed and the common-emitter current gain is determined.

Breakdown in a MOSFET

MOSFETs typically operate in three regimes depending on the drain-source voltage for a given gate voltage. Initially the current-voltage relation is linear, this is the Ohmic region. As the drain-source voltage increases the extracted current begins to saturate, this is the saturation region. As the drain-source voltage is further increased the breakdown region is entered, where the current ...

MOSFET with mobility models

This model shows how to add several linked mobility models to the simple MOSFET example.

Schottky Contact

Schottky Contact This benchmark simulates the behavior of an ideal Schottky barrier diode made of a tungsten contact deposited on a silicon wafer. The resulting J-V (current density vs. applied voltage) curve obtained from the model under forward bias is compared with experimental measurements found in the literature

Small Signal Analysis of a MOSFET

This model shows how to compute the AC characteristics of a MOSFET. Both the output conductance and the transconductance are computed as a function of the drain current.

Caughey-Thomas Mobility in a Semiconductor

With an increase in the parallel component of the applied field, carriers can gain energies above the ambient thermal energy and be able to transfer energy gained by the field to the lattice by optical phonon emission. The latter effect leads to a saturation of the carriers mobility. The Caughey Thomas mobility model adds high field velocity scattering to an existing mobility model (or to a ...

Quick Search

1 - 10 of 11 First | < Previous | Next > | Last