案例集锦

COMSOL Multiphysics 案例库模型来自广泛的应用领域,包括电气、机械、流体和化工等行业。您可以下载现成即可使用的模型,以及详细的建模步骤说明,作为您建模工作的起点。请使用“快速搜索”查找与您的专业领域相关的模型,并登录或创建一个与有效的 COMSOL 许可证相关联的 COMSOL Access 帐户,下载模型文件。

Composite Piezoelectric Transducer

This example shows how to set up a piezoelectric transducer problem following the work of Y. Kagawa and T. Yamabuchi. The composite piezoelectric ultrasonic transducer has a cylindrical geometry that consists of a piezoceramic layer, two aluminum layers, and two adhesive layers. The system applies an AC potential on the electrode surfaces of both sides of the piezoceramic layer. The goal is ...

Thermal Microactuator

This tutorial model of a two-hot-arm thermal actuator couples three different physics phenomena: electric current conduction, heat conduction with heat generation, and structural stresses and strains due to thermal expansion. In this model version, the geometry is parameterized so that the effect of varying the actuator's dimensions can be analyzed.

Thickness Shear Mode Quartz Oscillator

AT cut quartz crystals are widely employed in a range of applications, from oscillators to microbalances. One of the important properties of the AT cut is that the resonant frequency of the crystal is temperature independent to first order. This is desirable in both mass sensing and timing applications. AT cut crystals vibrate in the thickness shear mode—an applied voltage across the faces of ...

Biased Resonator Models (2D)

Silicon micromechanical resonators have long been used for designing sensors and are now becoming increasingly important as oscillators in the consumer electronics market. In this series of models, a surface micromachined MEMS resonator, designed as part of a micromechanical filter, is analyzed in detail. The Stationary Analysis of a Biased Resonator model performs a stationary analysis of ...

Thermal Expansion in a MEMS Device

This model analyzes the thermal expansion in a MEMS device, such as a microgyroscope, where thermal expansion should be minimized. The device is made from the copper-beryllium alloy UNS C17500 and uses temperature-dependent material properties from the Material Library. The purpose of this model is to exemplify the use of the Material Library in COMSOL Multiphysics. This library contains more ...

Thin Film BAW Composite Resonator

Bulk Acoustic Wave (BAW) resonators can be used as narrow band filters in radio-frequency applications. The chief advantage compared with traditional ceramic electromagnetic resonators is that BAW resonators, thanks to the acoustic wavelength being much smaller than the electromagnetic wavelength, can be made much smaller. In addition to the desired bulk acoustic mode, the resonator structure ...

Thermoelastic Damping in a MEMS Resonator

Thermoelastic damping, which arises when you subject a material to cyclic stress, is an important factor when designing MEMS resonators. The stress brings about deformation, where materials heat under compressive stress and cool under tensile stress. Thus, due to the resulting heat flux, energy is lost to bring about this damping. The magnitude of the energy loss depends on the vibrational ...

Residual Stress in a Thin-Film Resonator

Surface micromachined thin films are often subject to residual stress. This COMSOL Multiphysics example describes a thin film resonator with straight or folded cantilever beam springs. The resonance frequencies of the resonator are affected by thermal stress. Using folded springs relieves this effect. The example is made up of four models: two thin film resonators with folded cantilever beam ...

Prestressed Micromirror

One method of creating spring-like structures or inducing curvature in thin structures is to plate them to substrates that are under the influence of residual stresses. The plating process can control this stress even for similar materials. One such device is the electrostatically controlled micromirror. It is typically quite small, and arrays of such devices can be implemented in projectors. ...

Pull-in of an RF MEMS Switch

This model analyzes an RF MEMS switch consisting of a thin micromechanical bridge suspended over a dielectric layer. A DC voltage greater than the pull-in voltage is applied across the switch, causing the bridge to collapse onto the dielectric layer with a resulting increase in the capacitance of the device. A penalty based contact force is implemented to model the contact forces as the bridge ...

Quick Search