案例集锦

COMSOL Multiphysics 案例库模型来自广泛的应用领域,包括电气、机械、流体和化工等行业。您可以下载现成即可使用的模型,以及详细的建模步骤说明,作为您建模工作的起点。请使用“快速搜索”查找与您的专业领域相关的模型,并登录或创建一个与有效的 COMSOL 许可证相关联的 COMSOL Access 帐户,下载模型文件。

Heating of a Flow in a Heat Exchanger Unit Cell

In this example, we study the transport by convection and conduction. Such a system may be found in a heat exchanger or in heating of endothermic reactors. The fluid flow enters the unit cell from below and the fluid is heated as it passes the heated cylinder. Since the problem is symmetric, we only need to treat half of the unit cell. We vary the flow rate, using the parametric solver, in ...

Temperature Field in a Cooling Flange

A cooling flange in a chemical process is used to cool the process fluid, which flows through the flange. The surrounding air cools the flange via natural convection. In the stationary model, the forced convection to the process fluid is modeled using a constant heat transfer coefficient. The natural convection cooling is modeled using tabulated empirical transfer coefficients that are ...

Copper Layer on Silica Glass

In this time-dependent model, a silica block of glass, coated with a thin copper layer is subjected to a heat flux. Copper is a highly conductive material, while the silica glass is of poor thermal conductivity, which sets up an highly-varied temperature differential. The model must therefore account for a highly conductive layer. This is done, using a the Highly Conductive Layer feature in ...

Isothermal and Non-Isothermal Heat Exchangers

The example concerns a stainless-steel MEMS heat exchanger, which you can find in lab-on-a-chip devices in biotechnology and in microreactors such as for micro fuel cells. This model examines the heat exchanger in 3D, and it involves heat transfer through both convection and conduction. The model solves for the temperature and heat flux in the device and investigate the convective term’s ...

Thermal Bridges in Building Construction—2D Square Column

This example studies heat transfer in a square column. Cold and hot temperature conditions are applied to the boundaries. Due to the symmetry of the problem, the geometry is simplified to half of the square. The temperature field is compared with the analytic data. This example corresponds to the case 1 described in the European standard EN ISO 10211:2007 for thermal bridges in building ...

Thermal Bridges In Building Construction—2D Composite Structure

This example studies heat transfer in a composite two-dimensional structure. Four materials with distinct thermal conductivities k compose the structure. The top and bottom boundaries are facing environments respectively at 0°C and 20°C. The temperature distribution and the heat flux through the structure are compared with published data. This example corresponds to the case 2 described in ...

Thermal Performances of Windows

During the design of a building, environmental issues have gained considerable influence in the entire project. One of the first concerns is to improve thermal performances. In this process, simulation software are key tools to model thermal losses and performances in the building. The international standard ISO 10077-2:2012 deals with thermal performance of windows, doors and shutters. It ...

Non-Isothermal Flow Around a Cooling Device

This model shows the application of COMSOL Multiphysics in the modeling of non-isothermal laminar flow of fluids (in this case a gas). The model assumes that the expansion work done by the gas is negligible, that the variations in temperature are obtained through external heating, and that the fluid is an ideal gas. The model treats the steady flow of a gas over a fin, which is heated by an ...

Heating of a Slab

This simple example covers the heating of a finite slab and how the temperature varies with time. We will set up the problem in COMSOL Multiphysics after which we compare the solution to the analytical solution.

Heated Vertical Plate

This model shows the application of COMSOL Multiphysics in modeling the non-isothermal flow of gases at relatively low flow velocities. Here, a vertical plate is held at a constant temperature, which is higher than that of the surrounding air. When the warm plate heats the air near its surface, the air starts rising upward due to its change in density. The model assumes that the work done ...

Quick Search