案例集锦

COMSOL Multiphysics 案例库模型来自广泛的应用领域,包括电气、机械、流体和化工等行业。您可以下载现成即可使用的模型,以及详细的建模步骤说明,作为您建模工作的起点。请使用“快速搜索”查找与您的专业领域相关的模型,并登录或创建一个与有效的 COMSOL 许可证相关联的 COMSOL Access 帐户,下载模型文件。

Concrete Beam with Reinforcement Bars

Concrete structures almost always contain reinforcements in the shape of steel bars ("rebars"). In COMSOL, individual rebars can be modeled by adding a Truss interface to the Solid interface used for the concrete. The solid mesh for the concrete and the rebar mesh can be independent, since the displacements are mapped from within the solids onto the rebar at a certain position.

Flexible and Smooth Strip Footing on a Stratum of Clay

A common verification model for geotechnical problems is of a shallow stratum layer of clay. In this model, a vertical load is applied to the clay strata top surface and the static response and collapse load are studied. The clay is modeled as an elastic-perfectly plastic material and the Mohr-Coulomb yield condition under plane strain conditions is used. The response is studied using an ...

Isotropic Compression Using Cam-Clay Model

Isotropic compression is a common exercise in soil testing. The modified Cam-Clay model describes the relation between the void ratio and the logarithm of the pressure. In this example, a soil sample is placed inside cylinder 10 cm in diameter and 10 cm in height. Due to the symmetry, the model is solved in 2D axial symmetry. A boundary load produces isotropic compression conditions.

Triaxial Test

The triaxial test is one of the most common tests used in laboratory soil testing. The soil sample is normally placed inside a rubber membrane and then compressed maintaining a radial pressure. In this model, a vertical displacement and a confinement pressure are applied on the sample and the static response and the collapse load for various confinement pressures are studied. The material is ...

Tunnel Excavation

This model provides an estimation of the behavior of the soil during a tunnel excavation. The surface settlement and the width of the plastic region around the tunnel are important parameters needed to predict the reinforcements to use during the excavation. Two study steps are used. The first computes the stress state of the soil before excavating the tunnel. The second computes the ...

Deep Excavation

This deep excavation model is inspired by a benchmark exercise specified by a working group of the German Society for Geotechnics. In this model, a 20 m excavation is modeled with ten steps by means of a parametric sweep. The interaction between the soil and the retaining wall is modeled with contact pairs, and struts are activated as the excavation reaches their depths.

Block Verification

This model shows how to set up a uniaxial compression test on a prestressed soil sample. Due to uniaxial compression and simple initial stress values, it is possible to determine the vertical yield stress analytically. The soil sample is modeled with soil plasticity and the Mohr-Coulomb criterion.

Quick Search