案例集锦

COMSOL Multiphysics 案例库模型来自广泛的应用领域,包括电气、机械、流体和化工等行业。您可以下载现成即可使用的模型,以及详细的建模步骤说明,作为您建模工作的起点。请使用“快速搜索”查找与您的专业领域相关的模型,并登录或创建一个与有效的 COMSOL 许可证相关联的 COMSOL Access 帐户,下载模型文件。

Orange Battery

This tutorial example models the currents and the concentration of dissolved metal ions in a battery (corrosion cell) made from an orange and two metal nails. This type of battery is commonly used in chemistry lessons. Instead of an orange, lemons or potatoes can also be used.

Model of a Diffuse Double Layer

In the diffuse double layer and within the first few nanometers of an electrode surface, the assumption of electroneutrality is not valid due to charge separation. Typically, the diffuse double layer may be of interest when modeling very thin layers of electrolyte including those in electrochemical capacitors and microelectrodes. This example shows how to couple the Nernst-Planck equations to ...

Electrochemical Cell with Wire-Mesh Electrode

The electrochemical cell shown in this model can be regarded as a unit cell of a larger wire-mesh electrode that is common in many industrial processes. One of the most important aspects in the design of electrochemical cells is the current density distributions in the electrolyte and electrodes. Non-uniform current density distributions can be detrimental for the operation of electrochemical ...

Desalination of Water Using Electrodialysis

Electrodialysis is a separation process for electrolytes based on the use of electric fields and ion selective membranes. Some common applications of the electrodialysis process are: - Desalination of process streams, effluents, and drinking water - pH regulation in order to remove acids from, for example, fruit juices and wines - Electrowinning of precious metals This tutorial demonstrates ...

Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a common technique in which a small oscillating perturbation in cell potential is applied to an electrochemical system so as to interrogate the kinetic and transport properties. The Electroanalysis interface is used with a frequency domain study to simulate EIS for a range of electrode reaction rates. Nyquist and Bode plots illustrate the transition ...

Cyclic Voltammetry at an Electrode

Cyclic voltammetry is a common analytical electrochemical technique, where the potential at a working electrode is swept over a range and back again while the current is recorded. The current-voltage waveform, referred to as a voltammogram, provides information about the reactivity and mass transport properties of an electrolyte. For large electrodes, the model is simplified to a 1D geometry by ...

Electrochemical Treatment of Tumors

This model incorporates the transport and electrolytic reaction in the treatment of tumor tissue. Oxygen evolution at the anode produces protons, which lowers the pH, while chlorine production also leads to lowered pH through the hydrolysis of chlorine. One effect of a low pH is the permanent destruction of haemoglobin in the tissue, resulting in the eradication of tumor tissue. This model ...

Current Distribution in a Chlor-Alkali Membrane Cell

The chlor-alkali membrane process is one of the largest in industrial electrolysis with the production of roughly 40 million metric tons of both chlorine and caustic soda per year. Chlorine is used predominantly for the production of vinyl chloride monomer, which in turn is used for the production of poly vinyl chloride (PVC). Current density in membrane-cell technology has increased dramatically ...

Voltammetry at a Microdisk Electrode

Voltammetry is modeled at a microelectrode of 10um radius. In this common analytical electrochemistry technique, the potential at a working electrode is swept up and down and the current is recorded. The current-voltage waveform ("voltammogram") gives information about the reactivity and mass transport properties of the analyte. Microelectrodes are popular in electroanalysis because they ...

Thin Layer Chronoamperometry

The common electroanalytical method of exhaustive amperometric detection in a microscopic thin layer is modelled as a 1D-symmetric diffusion problem. The simulated result agrees with the analytical Cottrell equation at short times, and deviates as expected at long times when the diffusion layer spans the thin layer cell.

Quick Search

1 - 10 of 11 First | < Previous | Next > | Last