案例集锦

COMSOL Multiphysics 案例库模型来自广泛的应用领域,包括电气、机械、流体和化工等行业。您可以下载现成即可使用的模型,以及详细的建模步骤说明,作为您建模工作的起点。请使用“快速搜索”查找与您的专业领域相关的模型,并登录或创建一个与有效的 COMSOL 许可证相关联的 COMSOL Access 帐户,下载模型文件。

Eigenvalue Analysis of a Crankshaft

This model describes a modal analysis of a crankshaft. The pistons’ reciprocating movement is transferred to the crankshaft through connecting rods by means of crankshaft throws. The forces, torques, and bending moments, which are highly variable both in time and space, subject the crankshaft to very high and complex loading. The crankshaft design must therefore incorporate careful and ...

Image Import: Homogenized Pore Scale Flow and Thermal Conduction

You can now use image data to represent 2D material distributions or to identify regions with different materials by their color or gray scale. Images used in this way can have many origins such as scanning electron microscope (SEM), computed tomography (CT), or magnetic resonance imaging (MRI). An important application of image import is for easy computation of equivalent volume-averaged ...

Sloshing Tank

Transport of large quantities of fluid can happen in unstable environments. A perfect example is an oil tanker on the high seas. This model uses ALE for an incompressible Navier-Stokes problem with a free surface. This models the fluid with its original mesh, but allows the mesh to deform according to the fluid’s ‘deformation’. This requires that the position of the mesh and its nodes ...

Acoustics of a Muffler

This is a model of the pressure wave propagation in a muffler for a combustion engine. The approach is general for analysis of damping of propagation of harmonic pressure waves. The model shows how 3D acoustics can be modeled in fairly complex geometries. It also shows COMSOL Multiphysics' coupling variable feature between different boundaries. The problem is solved in the frequency domain and ...

Transport and Adsorption

This model demonstrates how to model phenomena defined in different dimensions in a fully coupled manner using COMSOL Multiphysics. Whereas in most cases the reaction rate expression is defined as a function of the concentrations of the reactants and products, in adsorption reactions it is also necessary to model the surface concentrations of the active sites or surface complex. This implies ...

Marangoni Convection

Marangoni convection occurs when the surface tension of an interface (generally liquid-air) depends on the concentration of a species or on the temperature distribution. In the case of temperature dependence, the Marangoni effect is also called thermo-capillary convection. The Marangoni effect is of primary importance in the fields of welding, crystal growth and electron beam melting of metals. ...

2D Heat Transfer Benchmark with Convective Cooling

This example shows a 2D steady-state thermal analysis including convection to a prescribed external (ambient) temperature. It is given as a benchmarking example. The benchmark result for the target location is a temperature of 18.25 C. The COMSOL Multiphysics model, using a default mesh with 556 elements, gives a temperature of 18.28 C. Successive uniform refinements show a temperature of ...

Filling of a Capillary Channel: Level Set and Phase Field Models

This example studies a narrow vertical cylinder placed on top of a reservoir filled with water. Because of wall adhesion and surface tension at the air/water interface, water rises through the channel. Surface tension and wall adhesive forces are often used to transport fluid through microchannels in MEMS devices or to measure, transport and position small amounts of fluid using micropipettes. ...

Thermal Bridges in Building Construction—EN ISO 10211:2007

The European standard EN ISO 10211:2007 for thermal bridges in building constructions provides four test models—two 2D and two 3D—for validating a numerical method (Ref. 1). If the values obtained by a method conform to the results of all these four cases, the method is classified as a three-dimensional steady-state high precision method. This document presents COMSOL Multiphysics results ...

The Telegraph Equation

This model examines how telegraph wire transmits a pulse of voltage using the telegraph equation. The telegraph equation models mixtures between diffusion and wave propagation by introducing a term that accounts for effects of finite velocity to a standard heat or mass transport equation. In this model a small section of a telegraph wire is treated to study the pulse of voltage moving along ...

Quick Search