pb_inf abs(aveop1(n))*k_B_const*T0 Reservoir pressure (high vacuum) qa_inf pa_inf+6*plambda qb_inf pb_inf+6*plambda omegabar (2-alpha)/alpha*((1+b1*alpha)+(epsilon*b0-(1+b1*alpha))*(b2*plambda)/(pa_inf-pb_inf)*log((pa_inf+b2*plambda)/(pb_inf+b2*plambda))) Dimensionless function F Fc*(1+(16*plambda)/(qa_inf+qb_inf)*(omegabar-3/4)) Dimensionless function Fc 3*pi*Dtube/(32*Ltube) Dimensionless function qa (((1+F)*qa_inf^2+F*qb_inf^2)/(1+2*F))^0.5 qb (((1+F)*qb_inf^2+F*qa_inf^2)/(1+2*F))^0.5 pa qa-6*plambda Inlet pressure (low vacuum side) pb qb-6*plambda Outlet pressure (high vacuum side) Mdot beta*F*(qa^2-qb^2) General mass flow rate pm (pb+pa)/2 Average Pressure Knm plambda/pm Average Knudsen number rho_b Mn0*pb_inf/(R_const*T0) Average density in reservoir b lambda_b 2*mu0/(c*rho_b) Mean free path in reservoir b Knm_b lambda_b/0.5[m] Knusden number in reservoir b c sqrt((8*R_const*T0)/(pi*Mn0)) Molecular mean thermal speed b0 16/(3*pi) Dimensionless parameter b1 0.15 Dimensionless parameter b2 0.7*alpha/(2-alpha) Dimensionless parameter delta 4/3*(2-alpha) Dimensionless parameter kappa (delta-1)/delta*alpha*Ltube/Dtube Dimensionless parameter epsilon (1+kappa)/(delta+kappa) Dimensionless parameter plambda pi*mu0*c/(4*Dtube) Pressure at which the Knudsen number is unity beta Dtube^3/(3*pi*mu0*c^2) omegabar_f (2-alpha)/alpha*epsilon*b0 Free molecular flow limit for omegabar Mdot_c_inf Dtube^4*pm*(pa_inf-pb_inf)/(16*mu0*c^2*Ltube) Mass flow rate, continuum limit, infinite tube Mdot_f_inf Mdot_c_inf*8*plambda/pm*omegabar_f Mass flow rate, free molecular flow limit, infinite tube Mdot_inf Mdot_c_inf*(1+8*plambda/pm*omegabar) Mass flow rate, infinite tube