Lightning-Induced Voltage of an Overhead Line Over Lossy Ground

Introduction

Lightning strikes can induce high voltages on power transmission lines and cause insulation failure and power outage. Therefore, it is of great importance to compute lightning-induced voltage during the design, operation, and maintenance stages. Apart from the height of the overhead line and the striking point, other parameters like soil conductivity and lightning channel inclination, also play a big role.

This model shows how to calculate the lightning induced voltage of an overhead line over a lossy ground. Lightning channels with different inclinations are considered. The effect of soil conductivity is also studied. The configuration of the model is shown in Figure 1, where the voltage at both ends of an overhead line (A and B) are assumed to be measured with an oscilloscope that has a capacitance of 50 pF and a resistance of 600Ω.

Figure 1: Configuration of the model.

Model Definition

Lightning current is varying in time and a transient 3D study is required. The RF Module provides a physics interface named as Electromagnetic Waves, Transient that is dedicated for this purpose. The Electromagnetic Waves, Transient interface provides predefined lightning current. The current can be easily visualized by clicking the Plot Pulse Shape button in the Settings window, as shown in Figure 2.

Figure 2: The lightning current used in the model.
The radius of a lightning channel is usually a few millimeters and it is here modeled with the Edge Current feature. Lightning current typically travels at one-third the speed of light due to corona discharges around the channel. The Edge Current feature defines the waveform of the current as well as how it is propagating along the edge (lightning path).

The oscilloscope is simulated with a real capacitor in parallel with a resistor modeled with the Lumped Element feature. The modeling of thin wire is critical in computing the induced voltage. The section below introduces a simplified method of modeling thin wire using the Electromagnetic Waves, Transient interface.

THEORY

Thin wires are widely presented in electrical and electronic systems. The aspect ratio of the wire can be more than six orders of magnitude such that volumetric meshing of the wire is impractical. There are numerous methods to model thin wires based on either Boundary Element Method (BEM) or ad hoc assumptions as in Finite Difference Time Domain (FDTD) method. The main idea of modeling thin wire in ad hoc assumptions is to make the wire lay in an edge of the structured mesh and manually modify material properties in the cell containing the wire, as illustrated in Figure 3.

Figure 3: Thin wire numerical representation
Let $\mathrm{d} s$ be the side cell length of the structured mesh. The thin wire with a radius of r_{0} in air has an equivalent radius of 0.23 ds if the electric field along the axis of the wire (the out-of-plane direction in Figure 3) is set to zero. It is further noticed that a thin wire can be equivalently represented by placing a zero-radius wire in a rectangular prism, coaxial with the thin wire, with a cross-sectional area of $2 \mathrm{~d} s$ by $2 \mathrm{~d} s$ and the modified relative permittivity and permeability given by

$$
\varepsilon_{\mathrm{r}}^{*}=\frac{\ln \left(\frac{1}{0.23}\right)}{\ln \left(\frac{\mathrm{d} s}{r_{0}}\right)}, \mu_{\mathrm{r}}^{*}=\frac{1}{\varepsilon_{\mathrm{r}}^{*}}
$$

ADVANTAGES AND DISADVANTAGES

The advantages of the above approach are:

- It reduces the total DoFs significantly as the volumetric meshing is avoided
- The results are acceptable in engineering applications

The disadvantages are:

- It relies on a specifically structured mesh, for example, in the domain containing the wire structure
- The this wire cannot be too close to other thin wires and objects of interest

IMPLEMENTATIONS IN FEM

It is possible to model the thin wire in the Finite Element framework that the Electromagnetic Waves, Transient interface is built on. The modeling requires several settings as follows:

- In the Geometry, add a block that is coaxial to the thin wire
- In the Electromagnetic Waves, Transient interface settings, set the Discretization to linear
- Add a Pointwise Constraint on the wire to configure it effectively as a perfect electric conductor by constraining the tangential magnetic vector potential to zero
- In the Mesh, add a mapped mesh on one side of the block and then use a Swept feature

Note that the method described above is based on ad hoc assumptions and the abovementioned disadvantages should always be kept in mind. The method therefore only provide a first approximation and it requires further benchmarking and validation with other numerical methods and experiments.

Results and Discussion

Figure 4 shows the computed induced voltage at both ends of the overhead line with different soil conductivity. It clearly shows that increasing soil conductivity can significantly decrease the induced voltage.

The position and inclination of the lightning channel is parameterized and therefore it is straightforward to investigate their effects on induced voltage. The model can also be extended to model multiple overhead lines and to include other objects like buildings.

Figure 4: Induced voltage at End A and End B as a function of time under two different soil conductivities.

Application Library path: RF_Module/ESD_and_Lightning_Surge/ lightning_induced_voltage_overhead_lines

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Radio Frequency>Electromagnetic Waves,
Transient (temw).
3 Click Add.
4 Click \rightarrow Study.
5 In the Select Study tree, select General Studies>Time Dependent.
6 Click $\sqrt{ }$ Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 Click Clear Table.

4 In the table, enter the following settings:

Name	Expression	Value	Description
W_air	$1200[\mathrm{~m}]$	1200 m	Width of the air domain
D_air	$1000[\mathrm{~m}]$	800 m	Depth of the air domain
H_air	$200[\mathrm{~m}]$	2000 m	Height of the air domain
H_soil	$300[\mathrm{~m}]$	300 m	Soil layer thickness
L_wire	$6[\mathrm{~m}]$	6 m	Length of the wire
H_wire	$1[\mathrm{~cm}]$	0.01 m	Height of the wire
r_wire		Radius of the wire	

Name	Expression	Value	Description
LDx	$80[\mathrm{~m}]$	80 m	X distance between wire and striking point
LDy	20 [m]	20 m	Y distance between wire and striking point
ds	1[m]	1 m	Thin wire domain mesh size
vr	150 [m/us]	$1.5 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$	Current velocity
epsilonr	$\begin{aligned} & \log (1 / 0.23) / \\ & \log \left(d s / r _w i r e\right) \end{aligned}$	0.31914	Modified relative permittivity
mur	1/epsilonr	3.1335	Modified relative permeability
C_term	$50[\mathrm{pF}$]	5E-II F	Capacitance used for termination
R_term	600[ohm]	600Ω	Resistance used for termination
S_capacitor	0.5 [m]	0.5 m	Separation of the parallel plate capacitor
W_capacitor	$3[\mathrm{~m}]$	3 m	Width of the capacitor
L_capacitor	```C_term* S_capacitor/ epsilon0_const/ W_capacitor```	0.94117 m	Length of the capacitor
angle	90 [degree]	1.5708 rad	Angle of inclination of the wire
sigma_soil	0.01 [$/ \mathrm{m}$]	0.01 S/m	Soil conductivity

GEOMETRY I
Block I (blk I)
I In the Geometry toolbar, click \square Block.
2 In the Settings window for Block, locate the Size and Shape section.
3 In the Width text field, type W_air.
4 In the Depth text field, type D_air.
5 In the Height text field, type H_{-}air.

6 Locate the Position section. In the \mathbf{z} text field, type - H_soil.
7 Click to expand the Layers section. In the table, enter the following settings:

Layer name	Thickness (m)
Layer 1	H_soil

8 Click Build Selected.

DEFINITIONS

In the Model Builder window, expand the Component I (compl)>Definitions node.
Hide for Geometry I
I In the Model Builder window, expand the Component I (compl)>Definitions>View I node.

2 Right-click View I and choose Hide for Geometry.
3 In the Settings window for Hide for Geometry, locate the Selection section.
4 From the Geometric entity level list, choose Boundary.
5 On the object blkI, select Boundaries 4, 5, and 7 only.

GEOMETRY I

Line Segment I (Is I)
I In the Geometry toolbar, click \varnothing More Primitives and choose Line Segment.
2 In the Settings window for Line Segment, locate the Starting Point section.
3 From the Specify list, choose Coordinates.
4 In the \mathbf{x} text field, type W _air/2-L_wire/2.
5 In the y text field, type D_air/2.
6 In the \mathbf{z} text field, type H_wire.
7 Locate the Endpoint section. From the Specify list, choose Coordinates.
8 In the \mathbf{x} text field, type W _air/2+L_wire/2.
9 In the y text field, type D_{-}air $/ 2$.
10 In the \mathbf{z} text field, type $H_{\text {_ }}$ wire.
Line Segment 2 (Is2)
I In the Geometry toolbar, click \varnothing More Primitives and choose Line Segment.
2 In the Settings window for Line Segment, locate the Starting Point section.
3 From the Specify list, choose Coordinates.

4 In the \mathbf{x} text field, type W_air/2+L_wire/2+LDx.
5 In the y text field, type D_air/2+LDy.
6 Locate the Endpoint section. From the Specify list, choose Coordinates.
7 In the \mathbf{x} text field, type W_air/2+L_wire/2+LDx+(H_air-H_soil)*0.8*cos(angle).
8 In the y text field, type D_air/2+LDy.
9 In the \mathbf{z} text field, type (H_air-H_soil)*0.8*sin(angle).
10 Click Build Selected.
Block 2 (blk2)
I In the Geometry toolbar, click Block.
2 In the Settings window for Block, locate the Size and Shape section.
3 In the Width text field, type L_wire.
4 In the Depth text field, type 2*ds.
5 In the Height text field, type 2*ds.
6 Locate the Position section. From the Base list, choose Center.
7 In the \mathbf{x} text field, type W_air/2.
8 In the y text field, type D_{-}air/2.
9 In the \mathbf{z} text field, type $H_{\text {_ }}$ wire.
10 Locate the Layers section. Find the Layer position subsection. Select the Front check box.
II In the table, enter the following settings:

Layer name	Thickness (m)
Layer 1	ds
I2 Click	Build Selected.

Work Plane I (wpl)
In the Geometry toolbar, click Work Plane.
Work Plane I (wpl)>Plane Geometry
In the Model Builder window, click Plane Geometry.
Work Plane I (wp I)>Rectangle I (rl)
I In the Work Plane toolbar, click \square Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type L_wire.

4 In the Height text field, type W_capacitor.
5 Locate the Position section. From the Base list, choose Center.
6 In the $\mathbf{x w}$ text field, type W_air/2.
7 In the $y \mathbf{w}$ text field, type D_{-}air/2.
8 Click to expand the Layers section. In the table, enter the following settings:

Layer name	Thickness (m)
Layer 1	L_capacitor

9 Clear the Layers on bottom check box.
10 Select the Layers to the left check box.
II Select the Layers to the right check box.

Extrude I (extl)

I In the Model Builder window, right-click Geometry I and choose Extrude.
2 In the Settings window for Extrude, locate the Distances section.
3 In the table, enter the following settings:
Distances (m)
S_capacitor
H_wire-ds
Delete Entities I (dell)
I Right-click Geometry I and choose Delete Entities.
2 In the Settings window for Delete Entities, locate the Entities or Objects to Delete section.
3 From the Geometric entity level list, choose Domain.
4 On the object extI, select Domains 3 and 4 only.
5 Click Build All Objects.

6 Click the $\downarrow^{\text {Go to Default View button in the Graphics toolbar. }}$

MATERIALS

Air

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, type Air in the Label text field.
3 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group		
Relative permittivity	epsilonr_iso ; epsilonrii $=$	1	I	Basic		
epsilonr_iso,						
epsilonrij $=0$					\quad	
:---	:---					

Property	Variable	Value	Unit	Property group
Relative permeability	mur_iso; murii = mur_iso, murij = 0	1	I	Basic
Electrical conductivity	sigma_iso ; sigmaii $=$ sigma_iso, sigmaij $=0$	0	S/m	Basic

4 Locate the Geometric Entity Selection section. In the list, choose I, 5, 6, 7, and 8.
5 Click - Remove from Selection.
6 Select Domains 2-4, 9, and 10 only.

Soil

I Right-click Materials and choose Blank Material.
2 In the Settings window for Material, type Soil in the Label text field.
3 Select Domain 1 only.
4 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Relative permittivity	epsilonr_iso ; epsilonrii = epsilonr_iso, epsilonrij = 0	1	I	Basic
Relative permeability	mur_iso; murii = mur_iso, murij = 0	1	I	Basic
Electrical conductivity	sigma_iso ; sigmaii $=$ sigma_iso, sigmaij $=0$	sigma_s oil	S/m	Basic

Modified Material

I Right-click Materials and choose Blank Material.
2 In the Settings window for Material, type Modified Material in the Label text field.
3 Locate the Geometric Entity Selection section. Click \square Paste Selection.

4 In the Paste Selection dialog box, type 5-8 in the Selection text field.

5 Click OK.

6 In the Settings window for Material, locate the Material Contents section.
7 In the table, enter the following settings:

Property	Variable	Value	Unit
Relative permittivity	epsilonr_iso ; epsilonrii $=$ epsilonr_iso, epsilonrij = 0	epsilonr	Property group
Relative permeability	mur_iso; murii = mur_iso,	mur	Basic
murij = 0	I	Basic	
Electrical conductivity	sigma_iso ; sigmaii $=$ sigma_iso, sigmaij =	0	S/m

ELECTROMAGNETIC WAVES, TRANSIENT (TEMW)
I In the Model Builder window, under Component I (compl) click Electromagnetic Waves, Transient (temw).

2 In the Settings window for Electromagnetic Waves, Transient, click to expand the Discretization section.

3 From the Magnetic vector potential list, choose Linear.

Scattering Boundary Condition I

I In the Physics toolbar, click \square Boundaries and choose Scattering Boundary Condition.
2 In the Settings window for Scattering Boundary Condition, locate the Boundary Selection section.

3 Click \square Paste Selection.

4 In the Paste Selection dialog box, type 1-5, 7-9, 58, 59 in the Selection text field.
5 Click OK.

Perfect Electric Conductor 2

I In the Physics toolbar, click \square Boundaries and choose Perfect Electric Conductor.
2 In the Settings window for Perfect Electric Conductor, locate the Boundary Selection section.

3 Click Paste Selection.

4 In the Paste Selection dialog box, type 12, 13, 15, 17, 24, 42, 45, 53, 54, 56 in the Selection text field.

5 Click OK.

Lumped Element A

I In the Physics toolbar, click Boundaries and choose Lumped Element.
2 In the Settings window for Lumped Element, type Lumped Element A in the Label text field.

3 Locate the Boundary Selection section. Click Paste Selection.
4 In the Paste Selection dialog box, type 10 in the Selection text field.
5 Click OK.
6 In the Settings window for Lumped Element, locate the Settings section.
7 In the $Z_{\text {element }}$ text field, type R_term.

Lumped Element B

I In the Physics toolbar, click Boundaries and choose Lumped Element.
2 In the Settings window for Lumped Element, type Lumped Element B in the Label text field.
3 Locate the Boundary Selection section. Click \square Paste Selection.
4 In the Paste Selection dialog box, type 52 in the Selection text field.
5 Click OK.
6 In the Settings window for Lumped Element, locate the Settings section.
7 In the $Z_{\text {element }}$ text field, type R_term.
8 Click the " $\bar{\sigma}$ Show More Options button in the Model Builder toolbar.
9 In the Show More Options dialog box, select Physics>Equation-Based Contributions in the tree.
$\mathbf{1 0}$ In the tree, select the check box for the node Physics>Equation-Based Contributions.
II Click OK.

Pointwise Constraint I
I In the Physics toolbar, click \square Edges and choose Pointwise Constraint.
2 In the Settings window for Pointwise Constraint, locate the Edge Selection section.
3 Click \square Paste Selection.
4 In the Paste Selection dialog box, type 35 in the Selection text field.
5 Click OK.

6 In the Settings window for Pointwise Constraint, locate the Pointwise Constraint section.
7 In the Constraint expression text field, type 0-tAx.

Pointwise Constraint 2

I Right-click Pointwise Constraint I and choose Duplicate.
2 In the Settings window for Pointwise Constraint, locate the Pointwise Constraint section.
3 In the Constraint expression text field, type 0-tAy.

Pointwise Constraint 3

I Right-click Pointwise Constraint 2 and choose Duplicate.
2 In the Settings window for Pointwise Constraint, locate the Pointwise Constraint section.
3 In the Constraint expression text field, type $0-\mathrm{tAz}$.

Edge Current I

I In the Physics toolbar, click \square Edges and choose Edge Current.
2 Select Edge 101 only.
3 In the Settings window for Edge Current, locate the Edge Current section.
4 From the Edge current type list, choose Lightning.
5 In the v_{p} text field, type vr .

MESH I

I In the Model Builder window, under Component I (compl) click Mesh I.
2 In the Settings window for Mesh, locate the Sequence Type section.
3 From the list, choose User-controlled mesh.
Mapped I
I In the Mesh toolbar, click \square Boundary and choose Mapped.
2 Drag and drop below Size.
3 In the Settings window for Mapped, locate the Boundary Selection section.

4 Click \square Paste Selection.

5 In the Paste Selection dialog box, type 17, 20, 24, 27 in the Selection text field.
6 Click OK.

Swept I

I In the Mesh toolbar, click Swept.
2 In the Settings window for Swept, locate the Domain Selection section.
3 From the Geometric entity level list, choose Domain.

4 Click Paste Selection.
5 In the Paste Selection dialog box, type 5-8 in the Selection text field.
6 Click OK.

Size I
I Right-click Swept I and choose Size.
2 In the Settings window for Size, locate the Element Size section.
3 Click the Custom button.
4 Locate the Element Size Parameters section.
5 Select the Maximum element size check box. In the associated text field, type 3*ds.
6 Select the Minimum element size check box. In the associated text field, type ds.
7 Click Build AII.

Size I

I In the Model Builder window, expand the Component I (compl)>Mesh I> Free Tetrahedral I node.

2 Right-click Free Tetrahedral I and choose Size.
3 In the Settings window for Size, locate the Geometric Entity Selection section.
4 From the Geometric entity level list, choose Edge.
5 Click Paste Selection.
6 In the Paste Selection dialog box, type 101 in the Selection text field.
7 Click OK.
8 In the Settings window for Size, locate the Element Size section.
9 Click the Custom button.
10 Locate the Element Size Parameters section.
II Select the Maximum element size check box. In the associated text field, type 5 [m].

Size 2

I In the Model Builder window, right-click Free Tetrahedral I and choose Size.
2 In the Settings window for Size, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.

4 Click \square Paste Selection.

5 In the Paste Selection dialog box, type 10, 52 in the Selection text field.
6 Click OK.

7 In the Settings window for Size, locate the Element Size section.
8 Click the Custom button.
9 Locate the Element Size Parameters section.
10 Select the Maximum element size check box. In the associated text field, type S_capacitor*0.6.

II Click Build AII.

STUDY I

I In the Model Builder window, click Study I.
2 In the Settings window for Study, locate the Study Settings section.
3 Clear the Generate default plots check box.

Step I: Time Dependent

I In the Model Builder window, under Study I click Step I: Time Dependent.
2 In the Settings window for Time Dependent, locate the Study Settings section.
3 From the Time unit list, choose $\boldsymbol{\mu s}$.
4 In the Output times text field, type range $(0,0.01,3)$.
5 Click to expand the Study Extensions section. Select the Auxiliary sweep check box.

6 Click + Add.

7 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
sigma_soil (Soil conductivity)	0.010 .02	$\mathrm{~S} / \mathrm{m}$

Solution I (soll)
I In the Study toolbar, click ${ }^{[/ F}=$ Show Default Solver.
2 In the Model Builder window, expand the Solution I (soll) node, then click TimeDependent Solver I.

3 In the Settings window for Time-Dependent Solver, click to expand the Time Stepping section.

4 From the Steps taken by solver list, choose Manual.
5 In the Time step text field, type 0.01 [us].
6 In the Study toolbar, click $=$ Compute.

RESULTS

Electric Field

I In the Home toolbar, click Add Plot Group and choose 3D Plot Group.
2 In the Settings window for 3D Plot Group, type Electric Field in the Label text field.

Surface I

I Right-click Electric Field and choose Surface.
2 In the Settings window for Surface, locate the Expression section.
3 In the Expression text field, type 1.
4 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
5 From the Color list, choose Gray.

Selection I

I Right-click Surface I and choose Selection.
2 In the Settings window for Selection, locate the Selection section.
3 Click \square Paste Selection.
4 In the Paste Selection dialog box, type 1-3, 6, 8, 9, 12, 42, 58, 59 in the Selection text field.

5 Click OK.

Electric Field

I In the Model Builder window, under Results click Electric Field.
2 In the Settings window for 3D Plot Group, locate the Plot Settings section.
3 Clear the Plot dataset edges check box.
Line I
I Right-click Electric Field and choose Line.
2 In the Settings window for Line, locate the Coloring and Style section.
3 From the Line type list, choose Tube.
Selection I
I Right-click Line I and choose Selection.
2 In the Settings window for Selection, locate the Selection section.
3 Click Paste Selection.
4 In the Paste Selection dialog box, type 101 in the Selection text field.
5 Click OK.
Line 2
In the Model Builder window, right-click Electric Field and choose Line.

Selection I

I In the Model Builder window, right-click Line 2 and choose Selection.
2 In the Settings window for Selection, locate the Selection section.

3 Click Paste Selection.

4 In the Paste Selection dialog box, type 35 in the Selection text field.
5 Click OK.

Electric Field

I Click the Show Grid button in the Graphics toolbar.
2 Click the \quad Show Legends button in the Graphics toolbar.
3 Click the 囲 Show Grid button in the Graphics toolbar.
4 Click the Show Grid button in the Graphics toolbar.
5 Click the 4 Zoom Extents button in the Graphics toolbar.
6 In the Model Builder window, under Results click Electric Field.
7 In the Settings window for 3D Plot Group, click to expand the Title section.
8 From the Title type list, choose None.

9 Locate the Data section. From the Time ($\boldsymbol{\mu}$) list, choose I.
10 In the Electric Field toolbar, click 0 Plot.
II Click the \downarrow Go to Default View button in the Graphics toolbar.

Induced Voltage

I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Induced Voltage in the Label text field.
3 Locate the Plot Settings section.
4 Select the \mathbf{x}-axis label check box. In the associated text field, type Time, $\mu \mathrm{s}$.
5 Select the y-axis label check box. In the associated text field, type Induced Voltage, kV.

6 Locate the Legend section. From the Position list, choose Lower left.

Global I

I Right-click Induced Voltage and choose Global.
2 In the Settings window for Global, locate the \mathbf{y}-Axis Data section.

3 In the table, enter the following settings:

Expression	Unit	Description
temw.Velement_1	kV	End A
temw.Velement_2	kV	End B

4 Click to expand the Coloring and Style section. Find the Line markers subsection. From the Marker list, choose Cycle.

5 From the Positioning list, choose Interpolated.
6 In the Induced Voltage toolbar, click 0 Plot.

