每页:
搜索

带标签的博客文章 传热模块

研究热电设备中的珀尔帖和塞贝克效应

2018年 9月 20日

我们将介绍热电学中的两个关键概念,塞贝克效应和佩尔蒂尔效应,以及在模拟热电装置中的加热和冷却时如何考虑它们。

摩擦搅拌焊接过程的传热研究

2018年 8月 6日

高效、经济、环保的摩擦搅拌焊接(FSW)在很多领域得到了广泛应用。顾名思义,这种焊接工艺是利用摩擦对材料进行加热,然后将这些材料搅拌在一起。为了获得最佳的 FSW 性能,产生的热量应当恰好获得合适的温度:如果温度过高,材料会熔化,从而降低焊接性能;如果温度过低,则这个过程的效率非常低。您可以使用 COMSOL 软件评估和改善 FSW 过程中的传热。

基于仿真对碳素制造中的热过程进行优化

2018年 7月 5日

来自西格里碳素有限公司的特约作者演示了他们公司如何使用传热仿真对碳素制造中的热过程进行优化。

电热耦合分析中常见的误区

2018年 4月 17日

在电力传输和消费电子等应用中,模拟温度非线性材料的电磁热可能至关重要,其中非线性是指材料的电导率和热导率随温度变化。在对这些非线性进行建模时,由于涉及非线性材料属性、边界条件和几何结构的组合,即使是经验丰富的分析人员有时也会得到非常意想不到的结果。这篇博客,

在非等温流动仿真中使用流入边界条件

2018年 3月 15日

非等温流动是一个多物理场问题,因为它结合了传热和 CFD 分析。 了解在模拟这些类型的场景时如何实现流入边界条件。

热虹吸管中的相变建模

2018年 3月 12日

来自 Noumenon Multiphysics 的一位客座博主撰写了关于热虹吸管中的相变建模的文章,热虹吸管是一种自 1800 年代以来一直保持房屋温暖的设备。

借助分步仿真优化增材制造工艺

2018年 3月 7日

增材制造有着广泛的应用,例如制造定制医疗设备、航空航天器材和艺术品。随着潜在用途的不断增加,增材制造能够满足需求是非常重要的。然而,分析和优化这个复杂的过程可能很困难。工程技术人员能做哪些工作来克服这个挑战呢?

使用 COMSOL Multiphysics® 模拟空气中的自然对流

2018年 2月 7日

自然对流是传热的一种类型,在各种规模的工程应用中都能发现。例如,自然对流现象有助于小型电子设备和大型建筑物维持合适的温度。无论在哪个应用领域,设计工程师都可以使用 COMSOL Multiphysics® 软件对空气中的自然对流进行二维和三维仿真。 自然对流传热 自然对流,也称为浮力流或自由对流,涉及温度和引起流体(如空气)运动的密度梯度,从而产生热量传递的过程。与强制对流不同,自然对流不需要风扇或外部源,只要存在温度和密度差就可以产生流体流动。 空气中的自然对流广泛用用在各行各业。在电子领域,自然多留会耗散设备中的热量,从而防止设备过热。太阳能烟囱和特朗布壁(Trombe walls)之类的结构也会利用这种传热方式对建筑物进行加热和冷却。此外,农业产业也依靠自然对流来干燥存储各种农产品。 通过垂直电路板的空气自然对流。 无论使建立二维还是三维模型,都可以使用 COMSOL Multiphysics® 软件研究空气中的自然对流。接下来,我们看一个例子。 模拟空气中的自然对流 在 COMSOL 案例库中,空气中的浮力流教程展示了对于两种不同的几何结构,如何模拟空气中的自然对流: 二维正方形 三维立方体 对于上述两种几何结构,除了左侧和右侧边缘分别被设置为低温和高温外,其他边缘均设置为隔热。温差(约 10K)会导致空气中形成密度梯度,从而产生浮力流。请注意,立方体的边多于正方形,从而影响空气的流动方式。 为了简化模型设置,我们可以使用 COMSOL Multiphysics 中的一些内置功能。首先是预定义的非等温流动 接口,可以耦合模型中的流体动力学和传热。我们还可以使用材料库轻松确定空气的热物理性质。 接下来,我们可以通过计算格拉斯霍夫数(Grashof numbers)、瑞利数(Rayleigh numbers)和普朗特数(Prandtl numbers)估计流态。格拉斯霍夫数和瑞利数表明流动是速度约为 0.2 m/s 的层流。普朗特数则表明黏度不影响空气的浮力,并且剪切层的厚度约为3mm。 想获取更多关于估算流态的详细信息,请从 COMSOL 案例库中下载模型文档。 注意:水中的浮力流教程模型 演示了一个用水代替空气的类似模型设置。 查看二维和三维仿真结果 首先,我们先来查看二维正方形中空气速度大小的仿真结果。在下左图中,可以看到速度随着空气靠近左和右边缘而增加,最大速度为 0.05m/s。尽管这比使用格拉斯霍夫数和瑞利数计算的估算速度略低,但仍属于同一个数量级。此外,其剪切层厚度(3mm)与普朗特数的估计值一致。 二维正方形中空气的速度大小(左)和速度曲线(右)仿真结果。 如下图所示,三维立方体中空气速度大小的模拟结果与二维正方形中空气速度大小的结果相似。 立方体中的速度大小仿真结果。 接下来,我们来看一下二维几何结构中温度的仿真结果。可以看出,正方形充满了单个对流单元,并且空气在边缘周围流动。在左右两侧温度差最大的地方,空气流动更快。 正方形的温度场仿真结果。 三维几何结构的仿真结果出现了稍微不同的情况。在垂直于受热面的垂直平面角部的立方体中有小的对流单元。如前所述,这种差异很可能是由于立方体的正面和背面气流影响所导致的。 三维立方体中的温度和速度场仿真结果。 后续操作 本文介绍的空气中的浮力流教程中的模型几何非常简单,但是该示例可为我们在实际应用中使用更复杂的模型模拟自然对流打下坚实的基础。 获取教程模型   有关此示例的更多详细信息,请点击上方按钮至 COMSOL 案例库下载 MPH 文件,并获取有关如何建立模型的步骤说明。


浏览 COMSOL 博客