每页:
搜索

化工 博客文章

借助仿真应对腐蚀问题

2015年 12月 28日

腐蚀是运输行业面临的最严峻的挑战之一。为了尽量减少腐蚀带来的危害,德国的一家研究机构与著名的汽车制造商——梅赛德斯-奔驰公司联手对汽车铆钉和钣金中发生的腐蚀现象展开了研究。借助 COMSOL Multiphysics 仿真软件,研究人员能够快速研究腐蚀对汽车部件造成的影响。

电池内的电流是逆向流动的吗?

2015年 11月 25日

电池在放电的过程中,电路中的电流从正极流向负极。与此同时,欧姆定律明确规定电流由正极流向负极,这便意味着电流与电场强度成正比。不过电池内究竟发生了什么反应?电流是否是从负极流向正极?本篇博客文章将为解释放电和充电过程中电池内部的电势分布情况。

石油平台的腐蚀与防护

2015年 10月 7日

海上石油工业被一个持续存在且代价高昂的问题所困扰:石油平台的腐蚀会导致结构的损坏和失效、造成业务损失,甚至发生事故。

通过仿真优化核反应堆设计

2015年 9月 25日

在运行中的核反应堆中,会发生复杂而且高度耦合的物理现象。在这些设备中通过物理实验对这些现象进行分析通常是困难的,有时甚至是不可能的。仿真为研究和优化核反应堆设计提供了一种简化的方法,可以节省时间、金钱和其他资源。 核反应堆动力学 我们先来看看核反应堆能源生产背后的机理。在核反应生产装置中,能量通过“裂变” 过程产生。当一个重原子的原子核,比如铀-235(铀的一种同位素)吸收了一个中子,中子就分裂成两个较轻的元素,或者裂变产物。这个过程释放出大量的动能,此外还包括有助于促进更多裂变发生的伽马辐射和自由中子。当不同类型的能量转化为热能时,反应堆内部的温度可达 1600K 左右。 管理这种热需要使用冷却剂。如下图所示,冷却剂(高压水或液态金属)在反应堆堆芯内循环,以消除过多热量。核热液压学的分支研究冷却剂的流动和相关现象,包括以下内容: 传热:传导、对流和辐射 传质:相变 流体流动:多相流和湍流 流-固耦合 (FSI) 是反应堆运行循环中另一个重要的考虑。当冷却剂流过反应堆的燃料板时,会导致这些部件产生偏差。此外,反应产生的大量热量会在反应器的结构部件中诱发热应力。 一个典型的核运行循环示意图。由Robert Steffens 拍摄,通过维基公共领域共享。 一旦核循环完成,用过的燃料就被储存在容器中,并被隔离在地下储存库中。使用钢桶来储存废物会带来腐蚀相关问题。设计这样的储存库是相当具有挑战性的,因为需要在一个稳定的地质环境(深挖 300 米到 1000 米)中建造这些结构。同样重要的是,要确保储存的半衰期为数百年的裂变产物不会通过容器扩散而进入地下水供应系统。 使用仿真简化分析核反应堆设计 为了使核反应堆安全有效地运行,对上述现象的充分理解至关重要。虽然有些因素可以通过实验进行研究,但在反应堆内的苛刻条件例如高温和高压水平以及放射性衰变这种情况下测试,依然相当困难。像放射性核素运输分析案例,需要经过几百年的时间,在实际的时间尺度上进行实验研究几乎是不可能的。 当实验测试遇到困难时,仿真可以提供解决方案——同时节省时间和金钱。考虑到核反应堆的耦合特性,COMSOL Multiphysics 仿真软件是模拟这些装置内的现象的理想平台。世界各地的核组织都选择使用该软件的内置功能来分析和设计感应炉、液态金属冷却液的电磁泵、加速器的射频腔,以及反应堆部件的无损检测。 以美国橡树岭国家实验室( Take Oak Ridge National Laboratory,ORNL)为例。ORNL 利用 COMSOL Multiphysics 改进了他们的一个大型高通量同位素反应堆(major High Flux Isotope Reactor,HFIR)的设计。基于仿真的方法,该团队能够研究反应堆各部件的性能及其运行背后的物理原理,包括热应力、非等温湍流和流-固耦合作用。ORNL 的研究人员还使用了仿真技术来支持他们努力将大型高通量同位素反应堆、安全转化为低浓缩铀燃料,这一过程有助于识别设计中的潜在问题,如屈曲和热点。 模拟分析使 ORNL 能够研究燃料板的挠度,燃料板是核反应堆核心的主要部件之一。 我们之前提到的关于实验研究放射性核素迁移的挑战是什么? 瑞士核安全稽查局(Swiss Nuclear Safety Inspectorate,ENSI)的一组研究人员也利用 COMSOL Multiphysics 模拟了这一现象。他们的研究结果以模拟放射性核素通过核储存库的黏土屏障传输的传统安全规范作为比较基准。 推进核工业发展 仿真为与实验研究核反应堆的相关挑战提供了解决方案。这种方法能够更加详细、准确的观察这些设备中发生的现象,从而更深入地理解如何优化它们的配置。仿真探究方法为开发更安全、更高效的核反应堆铺平了道路,同时也减少了测试新设计时构建原型的相关成本和资源。

借助 ICCP 与仿真预防船体腐蚀

2015年 8月 6日

为预防船体在恶劣的海洋环境中受腐蚀,我们通常采用阴极保护的方法。利用诸如牺牲阳极或外加电流等不同的方法,使海上作业的设备正常运转。外加电流阴极保护 (ICCP) 方法就是通过向船体施加外部电流来减轻腐蚀的。此方法的效能取决于多种因素,例如螺旋桨上是否涂有涂层。在这里,我们通过仿真来探讨螺旋桨上的涂层如何影响外加电流阴极保护方法的工效的。

利用仿真 App 研究锂离子电池的阻抗

2015年 7月 14日

电池在工作时通常会经历很多过程,而这些过程涉及了非常多的参数。如何深入探究电池内部的运行和反应过程?一种便捷的途径是分析电池的阻抗。借助“案例库”中的“锂离子电池阻抗”演示 App,我们可以轻而易举地对特定锂离子电池设计中的阻抗进行分析。此外,仿真 App 还能实现电池系统的参数化,在后续步骤中,参数化设置将有助于我们创建精确的瞬态模型。

保护飞行器复合材料免受雷击损坏

2015年 6月 11日

波音 787 梦幻客机的创新之处在于:其机身使用了超过 50% 的碳纤维复合材料。虽然这种飞行器复合材料具有重量轻和强度极佳等优点,但它们本身并不导电,因此需要额外的防护涂层来降低雷击损坏。本篇博客中,我们介绍了如何使用多物理场仿真来计算防护涂层中与典型飞行周期相关的温度波动所造成的热应力和位移。

借助仿真 App 探索生物传感器设计中的生物学

2015年 5月 12日

生物传感器是各类从分子层级理解生物系统详细机制的分析工具的主要部件。这些分析工具可用于各领域的生物分子检测,比如制药、医疗和食物行业、农业、环境技术以及针对生物系统的一般性研究。生物传感器演示 App 是一个非常不错的应用实例,它使得这个领域的人士即使不是仿真专家,也能从精确的多物理场仿真中受益。


浏览 COMSOL 博客