Particle Tracing

Laura Bowen | July 16, 2014

The need for a contaminant-free space to manufacture medicine has led scientists to try many creative new approaches to improve the process. At Argonne National Lab, creating a device that floats and rotates chemical compounds in thin air was just the answer they were looking for. It meant two important changes: the amount of each chemical necessary could be implemented very precisely and the risk of outside impurities disrupting the results was minimized.

Read more ⇢
Fanny Littmarck | January 3, 2014

Before conducting certain blood sample analyses, researchers need to separate the red blood cell particles from the blood plasma. Using lab-on-a-chip (LOC) technology, red blood cell separation can be achieved via magnetophoresis, i.e. motion induced by magnetic fields. Since the magnetic permeability of the particles is different from the blood plasma, their trajectory can be controlled within the flow channel of the LOC device and thereby separated out from the fluid.

Read more ⇢
Christopher Boucher | December 5, 2013

The trajectories of particles through fields can often be modeled using a one-way coupling between physics interfaces. In other words, we can first compute the fields, such as an electric field, magnetic field, or fluid velocity field, and then use these fields to exert forces on the particles using the Particle Tracing Module. If the number density of the particles is very large, however, the particles begin to noticeably perturb the fields around them, and a two-way coupling is needed […]

Read more ⇢

Article Categories

Alexandra Foley | October 1, 2013

Laminar static mixers are used for the accurate mixing of fluids (both liquid and gas). Unlike a mixer containing moving blades, a static mixer contains twisted stationary blades that are positioned at different angles throughout the cylindrical flow channel of the mixer. When a fluid is pumped through the channel, the alternating directions of the cross-sectional blades cause the fluid to become mixed as it passes along the length of the channel. This mixing technique allows for precise control over […]

Read more ⇢
Andrew Griesmer | February 11, 2013

Ultra-precise optical components require blemish-free surfaces that often cannot be achieved by the machining processes that grind these components. Fluid jet polishing (FJP) is a new technology being developed by Zeeko Ltd to replace the hand polishing that was often required. With the help of COMSOL, Zeeko was able to create a product that polishes the optical components in only ten minutes instead of an entire day, and without waveforms.

Read more ⇢
Fanny Littmarck | November 9, 2012

A mixer that doesn’t move may sound like an oxymoron, but it’s not. Used in various chemical species transport applications, static mixers are inexpensive, accurate, and versatile. Still, there is always room for improvement. Optimizing the design of static mixers calls for computer modeling, but traditional CFD methods may not be the best way to model these mixers. How do these motionless mixers work and how can their performance be simulated?

Read more ⇢
Fanny Littmarck | June 1, 2012

There are many exciting new features in the Particle Tracing Module for COMSOL Multiphysics version 4.3. The secondary particle emission feature is particularly fascinating. “This new option for the Wall Condition allows you to model filter multipliers and multipactors, which were previously very difficult to model”, says Dan Smith, Development Team Leader at COMSOL. A mathematical expression, like a logical expression containing the particle energy for instance, can be used to determine the number of secondary particles to be released. […]

Read more ⇢

Article Categories

Phil Kinnane | April 10, 2012

It’s been fun working with the next release. One of the great new features will be in the Particle Tracing Module and will allow particles to interact with each other, and not only with the macroscopic field they find themselves in. It also produces some pretty cool vids.

Read more ⇢

Article Categories

Phil Kinnane | January 18, 2012

The Particle Tracing Module webinar was a huge success. Over 1,250 people signed up for it and saw our lead developer, Dan Smith, demonstrate the product and explain the science behind it. He received a lot of questions during the webinar, and our support engineers are currently helping him answer them.

Read more ⇢

Article Categories

Phil Kinnane | January 10, 2012

The release of Version 4.2a was an exciting event for us at COMSOL. I had the opportunity to see a preview of new products and the big one for me was the Particle Tracing Module. Many of our customers and colleagues in the simulation industry had been requesting this for quite some time. I must admit that I thought it was just because they wanted a different type of postprocessing feature; another way of looking at streamlines.

Read more ⇢

Article Categories